Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

30 Results

<<   <   Page 1 of 3   >   >>
Workshop
HoloNets: Spectral Convolutions do extend to Directed Graphs
Christian Koke · Daniel Cremers
Poster
Tue 15:15 Refined Mechanism Design for Approximately Structured Priors via Active Regression
Christos Boutsikas · Petros Drineas · Marios Mertzanidis · Alexandros Psomas · Paritosh Verma
Poster
The noise level in linear regression with dependent data
Ingvar Ziemann · Stephen Tu · George J. Pappas · Nikolai Matni
Poster
Wed 8:45 Adaptive Principal Component Regression with Applications to Panel Data
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu
Poster
Wed 15:00 Errors-in-variables Fr\'echet Regression with Low-rank Covariate Approximation
Dogyoon Song · Kyunghee Han
Poster
Tue 15:15 Optimal Excess Risk Bounds for Empirical Risk Minimization on p-Norm Linear Regression
Ayoub El Hanchi · Murat Erdogdu
Poster
Tue 15:15 FIRAL: An Active Learning Algorithm for Multinomial Logistic Regression
Youguang Chen · George Biros
Poster
Tue 15:15 New Bounds for Hyperparameter Tuning of Regression Problems Across Instances
Maria-Florina Balcan · Anh Nguyen · Dravyansh Sharma
Poster
Tue 15:15 Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression
Jing Xu · Jiaye Teng · Yang Yuan · Andrew Yao
Poster
Thu 15:00 Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Shang Liu · Zhongze Cai · Xiaocheng Li
Poster
Tue 8:45 Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
Jingfeng Wu · Vladimir Braverman · Jason Lee
Poster
Thu 8:45 Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Ankit Pensia · Thanasis Pittas