Workshop
|
|
HoloNets: Spectral Convolutions do extend to Directed Graphs
Christian Koke · Daniel Cremers
|
|
Poster
|
Tue 15:15
|
Refined Mechanism Design for Approximately Structured Priors via Active Regression
Christos Boutsikas · Petros Drineas · Marios Mertzanidis · Alexandros Psomas · Paritosh Verma
|
|
Poster
|
|
The noise level in linear regression with dependent data
Ingvar Ziemann · Stephen Tu · George J. Pappas · Nikolai Matni
|
|
Poster
|
Wed 8:45
|
Adaptive Principal Component Regression with Applications to Panel Data
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu
|
|
Poster
|
Wed 15:00
|
Errors-in-variables Fr\'echet Regression with Low-rank Covariate Approximation
Dogyoon Song · Kyunghee Han
|
|
Poster
|
Tue 15:15
|
Optimal Excess Risk Bounds for Empirical Risk Minimization on p-Norm Linear Regression
Ayoub El Hanchi · Murat Erdogdu
|
|
Poster
|
Tue 15:15
|
FIRAL: An Active Learning Algorithm for Multinomial Logistic Regression
Youguang Chen · George Biros
|
|
Poster
|
Tue 15:15
|
New Bounds for Hyperparameter Tuning of Regression Problems Across Instances
Maria-Florina Balcan · Anh Nguyen · Dravyansh Sharma
|
|
Poster
|
Tue 15:15
|
Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression
Jing Xu · Jiaye Teng · Yang Yuan · Andrew Yao
|
|
Poster
|
Thu 15:00
|
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Shang Liu · Zhongze Cai · Xiaocheng Li
|
|
Poster
|
Tue 8:45
|
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
Jingfeng Wu · Vladimir Braverman · Jason Lee
|
|
Poster
|
Thu 8:45
|
Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Ankit Pensia · Thanasis Pittas
|
|