Skip to yearly menu bar Skip to main content

Spotlight Poster

A One-Size-Fits-All Approach to Improving Randomness in Paper Assignment

Yixuan Xu · Steven Jecmen · Zimeng Song · Fei Fang

Great Hall & Hall B1+B2 (level 1) #1709
[ ]
[ Paper [ Slides [ Poster [ OpenReview
Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST


The assignment of papers to reviewers is a crucial part of the peer review processes of large publication venues, where organizers (e.g., conference program chairs) rely on algorithms to perform automated paper assignment. As such, a major challenge for the organizers of these processes is to specify paper assignment algorithms that find appropriate assignments with respect to various desiderata. Although the main objective when choosing a good paper assignment is to maximize the expertise of each reviewer for their assigned papers, several other considerations make introducing randomization into the paper assignment desirable: robustness to malicious behavior, the ability to evaluate alternative paper assignments, reviewer diversity, and reviewer anonymity. However, it is unclear in what way one should randomize the paper assignment in order to best satisfy all of these considerations simultaneously. In this work, we present a practical, one-size-fits-all method for randomized paper assignment intended to perform well across different motivations for randomness. We show theoretically and experimentally that our method outperforms currently-deployed methods for randomized paper assignment on several intuitive randomness metrics, demonstrating that the randomized assignments produced by our method are general-purpose.

Chat is not available.