

A One-Size-Fits-All Approach to Improving Randomness in Paper Assignment

Yixuan (Even) Xu **Tsinghua**

Steven Jecmen Carnegie Mellon

Zimeng Song Independent

Fei Fang **Carnegie Mellon**

Paper Assignment: Setting

Basic setting

- n_p papers, n_r reviewers
- Assignment: $x \in \{0, 1\}^{n_p \times n_r}$
- Feasibility
 - Each **paper** gets **exactly** ℓ_p **reviewers**
 - Each **reviewer** gets at most ℓ_r papers
- Quality: A similarity matrix $S \in [0, 1]^{n_p \times n_r}$

Paper Assignment (Deterministic)

• Paper assignment as an **integer linear program**

MaximizeQuality(x) = $\sum_{p,r} x_{p,r} \cdot S_{p,r}$ (maximize Quality)Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ (paper requirement) $\sum_p x_{p,r} \leq \ell_r, \forall r$ (reviewer load) $x \in \{0, 1\}^{n_p \times n_r}$ (paper requirement)

• Produces the Maximum-Quality Assignment

Why Randomness

- Robustness to malicious behavior
- Evaluation of alternative assignments
- Reviewer diversity
- Reviewer anonymity

Paper Assignment (Randomized)

• Paper assignment as a **continuous linear program**

MaximizeQuality(x) = $\sum_{p,r} x_{p,r} \cdot S_{p,r}$ (maximize Quality)Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ (paper requirement) $\sum_p x_{p,r} \leq \ell_r, \forall r$ (reviewer load) $x \in [0, 1]^{n_p \times n_r}$

- Now *x*_{*p*,*r*} denotes the **marginal probability** of assignment
 - Shown by prior work that a **randomized assignment** can be converted into a **distribution of deterministic assignments**

PLRA (Jecmen et al. 2020, Deployed)

Probability Limited Randomized Assignment (PLRA)

Maximize

Quality(\boldsymbol{x}) = $\sum_{p,r} x_{p,r} \cdot S_{p,r}$

Subject to

$$\sum_{r} x_{p,r} = \ell_{p}, \forall p$$

$$\sum_{p} x_{p,r} \leq \ell_{r}, \forall r$$

$$\boldsymbol{x} \in [0, \boldsymbol{Q}]^{n_{p} \times n_{r}}$$

- Hyperparameter **Q**:
 - **Guarantees** each **paper-reviewer** pair is matched w.p. $\leq Q$
 - Mainly concerned with **robustness to malicious behavior**

A Problem with PLRA

- The **randomness** of its assignment depends on **Q**
 - Not easy to set, and sometimes **suboptimal with any Q**

Metrics for Randomness

Maximum Probability

- Maxprob(x) = max_{p,r}{ $x_{p,r}$ }
- Already used by PLRA as a constraint

Our proposed metrics

- Average maximum probability: $AvgMax(x) = \frac{1}{n_n} \sum_p \max_r \{x_{p,r}\}$
- Support size: Support(x) = $\sum_{p,r} \mathbf{1}[x_{p,r} > 0]$
- Entropy: Entropy(x) = $\sum_{p,r} x_{p,r} \cdot \log(1 / x_{p,r})$

• L2 norm: L2Norm(
$$x$$
) = $\sqrt{\sum_{p,r} x_{p,r}^2}$

Perturbed Maximization (PM)

Perturbed Maximization (PM)

MaximizePQuality(x) = $\sum_{p,r} f(x_{p,r}) \cdot S_{p,r}$ Subject to $\sum_r x_{p,r} = \ell_p, \forall p$ $\sum_p x_{p,r} \leq \ell_r, \forall r$ $x \in [0, Q]^{n_p \times n_r}$

• Perturbation Function $f(\cdot)$:

- A **non-decreasing**, **concave** function from $[0,1] \rightarrow [0,1]$
- Intuition: the higher $x_{p,r}$, the lower gain in **PQuality**

Theoretical Analysis

• (Informal) With the same probability limit *Q* and a strictly **concave** perturbation function $f(\cdot)$, PM outperforms PLRA under any of the proposed randomness measures without **loss** in solution **Quality** if the similarity matrix **S** is:

Blockwise Dominant or Discrete & Random

Experiments

• On the bidding data of **AAMAS2015**, PM has exactly the same performance on **Maxprob** with PLRA (where PLRA is **optimal**), and outperforms PLRA on **all** other randomness measures

Our Contributions

- We define new metrics to measure randomness of randomized paper assignments in peer review
- We propose Perturbed Maximization (PM)
 - Theoretically, PM outperforms prior work on structured matrices
 - Experimentally, PM outperforms prior work on real-world datasets
 - We also study the faster computation of PM (details in the paper)

Acknowledgements: This work was supported by ONR grant N000142212181, NSF grant IIS-2200410 and partly by Sloan Research Fellowship.