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Paper Assignment: Setting

• Basic setting
• �� papers, �� reviewers
• Assignment: � ∈ {0, 1}��×�� 

• Feasibility
• Each paper gets exactly ℓ� reviewers
• Each reviewer gets at most ℓ� papers

• Quality: A similarity matrix � ∈ [0, 1]��×��



Paper Assignment (Deterministic)

• Paper assignment as an integer linear program

Maximize �������(�) =  �,� ��,� ∙ ��,� (maximize Quality)

Subject to  � ��,� =ℓ�, ∀� (paper requirement)
 � ��,� ≤ℓ�, ∀� (reviewer load)
� ∈ {0, 1}��×��

• Produces the Maximum-Quality Assignment



Why Randomness

• Robustness to malicious behavior

• Evaluation of alternative assignments

• Reviewer diversity

• Reviewer anonymity



Paper Assignment (Randomized)

• Paper assignment as a continuous linear program

Maximize �������(�) =  �,� ��,� ∙ ��,� (maximize Quality)

Subject to  � ��,� =ℓ�, ∀� (paper requirement)
 � ��,� ≤ℓ�, ∀� (reviewer load)
� ∈ [�, �]��×��

• Now ��,� denotes the marginal probability of assignment
• Shown by prior work that a randomized assignment can be 

converted into a distribution of deterministic assignments



PLRA (Jecmen et al. 2020, Deployed)

• Probability Limited Randomized Assignment (PLRA)

Maximize �������(�) =  �,� ��,� ∙ ��,�
Subject to  � ��,� =ℓ�, ∀�

 � ��,� ≤ℓ�, ∀�
� ∈ [0, �]��×��

• Hyperparameter Q:
• Guarantees each paper-reviewer pair is matched w.p. ≤ �
• Mainly concerned with robustness to malicious behavior



A Problem with PLRA

• The randomness of its assignment depends on Q
• Not easy to set, and sometimes suboptimal with any Q



Metrics for Randomness

• Maximum Probability
• �������(�) = max�,�{��,�}
• Already used by PLRA as a constraint

• Our proposed metrics
• Average maximum probability: ������(�) = 1

��
 �max�{��,�}

• Support size: �������(�) =  �,��[��,� > 0]
• Entropy: �������(�) =  �,� ��,� ∙ log(1 / ��,�)

• L2 norm: ������(�) =  �,� ��,�2



Perturbed Maximization (PM)

• Perturbed Maximization (PM)

Maximize ��������(�) =  �,��(��,�) ∙ ��,�
Subject to  � ��,� =ℓ�, ∀�

 � ��,� ≤ℓ�, ∀�
� ∈ [0, �]��×��

• Perturbation Function �(∙):
• A non-decreasing, concave function from [0,1] → [0,1]
• Intuition: the higher ��,�, the lower gain in ��������



Theoretical Analysis

• (Informal) With the same probability limit � and a strictly 
concave perturbation function �(∙), PM outperforms PLRA 
under any of the proposed randomness measures without 
loss in solution Quality if the similarity matrix � is:

Blockwise Dominant or Discrete & Random



Experiments

• On the bidding data of AAMAS2015, PM has exactly the same 
performance on ������� with PLRA (where PLRA is optimal), 
and outperforms PLRA on all other randomness measures



Our Contributions

• We define new metrics to measure randomness of 
randomized paper assignments in peer review

• We propose Perturbed Maximization (PM)
• Theoretically, PM outperforms prior work on structured matrices
• Experimentally, PM outperforms prior work on real-world datasets
• We also study the faster computation of PM (details in the paper)
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