Skip to yearly menu bar Skip to main content

Spotlight Poster

Normalizing flow neural networks by JKO scheme

Chen Xu · Xiuyuan Cheng · Yao Xie

Great Hall & Hall B1+B2 (level 1) #613
[ ] [ Project Page ]
[ Paper [ Slides [ Poster [ OpenReview
Wed 13 Dec 3 p.m. PST — 5 p.m. PST


Normalizing flow is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks. Existing works adopt special network architectures and regularization of flow trajectories. In this paper, we develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which unfolds the discrete-time dynamic of the Wasserstein gradient flow. The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks, avoiding sampling SDE trajectories and score matching or variational learning, thus reducing the memory load and difficulty in end-to-end training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the induced trajectory in probability space to improve the model accuracy further. Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance compared with existing flow and diffusion models at a significantly reduced computational and memory cost.

Chat is not available.