Normalizing flow neural networks by JKO scheme

$\label{eq:chen Xu} \mbox{Chen Xu}^1 \mbox{ joint work with Xiuyuan Cheng}^2 \mbox{ and Yao Xie}^1$

¹ School of Industrial and Systems Engineering, Georgia Institute of Technology

² Department of Mathematics, Duke Unversity

Goal

- Improve the design and training of **normalizing flows**. Namely, invertible transformation of $X \leftrightarrow Z$ given samples from P_X .
- Allow efficient sampling from P_X and likelihood estimation $\log p(X)$.
- More computational and memory efficient than existing methods.

Mathematical background

• Normalizing flow: density evolution of $\rho(x,t)$, with $\rho(x,0) = p_X$ and $\lim_{t\to\infty} \rho(x,t) = p_Z \sim \mathcal{N}(0,I_d)$.

Mathematical background

- Normalizing flow: density evolution of $\rho(x,t)$, with $\rho(x,0) = p_X$ and $\lim_{t\to\infty} \rho(x,t) = p_Z \sim \mathcal{N}(0,I_d)$.
- Non-unique flow: we consider flow induced by ODE of $x(t) \sim \rho(x,t)$

$$dx(t)/dt = f(x(t), t)$$
(1)

→
$$x(t) = x(0) + \int_0^t f(x(s), s) ds.$$
 (2)

Mathematical background

- Normalizing flow: density evolution of $\rho(x,t)$, with $\rho(x,0) = p_X$ and $\lim_{t\to\infty} \rho(x,t) = p_Z \sim \mathcal{N}(0,I_d)$.
- Non-unique flow: we consider flow induced by ODE of $x(t) \sim \rho(x,t)$

$$dx(t)/dt = f(x(t), t)$$
(1)

$$\rightarrow x(t) = x(0) + \int_0^t f(x(s), s) ds.$$
(2)

• Transport regularization: $\mathcal{T} = \int_0^1 \mathbb{E}_{x \sim \rho(\cdot, t)} \|f(x, t)\|^2 dt$. Recovers the Wasserstein-2 optimal transport under the Benamou-Brenier formula [Villani 2009].

Mathematical background (cont.)

• Flow induced by ODE of $x(t) \sim \rho(x, t)$

$$dx(t)/dt = f(x(t), t)$$
(1)

• Normalizing flow models learn f using neural networks f_{θ} .

Mathematical background (cont.)

• Flow induced by ODE of $x(t) \sim \rho(x,t)$

$$\frac{dx(t)}{dt} = f(x(t), t) \tag{1}$$

- Normalizing flow models learn f using neural networks f_{θ} .
- Specifically, the objective is

$$\min_{\theta} \mathsf{KL}((T_{\theta})_{\#} p_X || p_Z) + \mathcal{R}(\theta).$$
(2)

• $T_{\theta}(x) = x + \int_{0}^{1} f_{\theta}(x(s), s), x(0) = x;$ $T_{\#}$ is the push-forward operation with $(T_{\#}p)(A) = p(T^{-1}(A))$ for a measureable set A.

Mathematical background (cont.)

• Flow induced by ODE of $x(t) \sim \rho(x,t)$

$$dx(t)/dt = f(x(t), t)$$
(1)

- Normalizing flow models learn f using neural networks f_{θ} .
- Specifically, the objective is

$$\min_{\theta} \mathsf{KL}((T_{\theta})_{\#} p_X || p_Z) + \mathcal{R}(\theta).$$
(2)

- $T_{\theta}(x) = x + \int_{0}^{1} f_{\theta}(x(s), s), x(0) = x;$ $T_{\#}$ is the push-forward operation with $(T_{\#}p)(A) = p(T^{-1}(A))$ for a measureable set A.
- (2) is equivalent to maximizing $\log p(X)$ up to constants [Onken et al., 2021].

Current approaches

• *Continuous* normalizing flow (CNF) [Grathwohl et al., 2019, Onken et al., 2021] based on Neural ODE [Chen et al., 2019].

Current approaches

- Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken et al., 2021] based on Neural ODE [Chen et al., 2019].
- \bullet Most existing continuous flows pre-specify the number of blocks L to be trained

- Namely, the integral from [0,1] is broken into a sequence of L smaller integrals each with f_{θ_l} , or the model f_{θ} itself is a composition of L smaller ones of identical architecture.

Current approaches

- *Continuous* normalizing flow (CNF) [Grathwohl et al., 2019, Onken et al., 2021] based on Neural ODE [Chen et al., 2019].
- \bullet Most existing continuous flows pre-specify the number of blocks L to be trained

- Namely, the integral from [0,1] is broken into a sequence of L smaller integrals each with f_{θ_l} , or the model f_{θ} itself is a composition of L smaller ones of identical architecture.

- Challenges are
 - Design: how to specify L.
 - Computation: joint training of all L blocks.
 - Memory: samples are passed through all L blocks.

Main contribution

- Introduce block-wise training of CNF models, where each block is allowed simpler architecture.
- Efficient training with less computation and memory cost.
- Better generative performance and likelihood estimation vs
 CNF and diffusion models on simulated and real data.

Proposed JKO-iFlow

• Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto (JKO) scheme [Jordan et al., 1998]: starting at $p_0 = \rho_0 \in \mathcal{P}$, with step size h > 0, the JKO scheme at the k-th step is

$$p_{k+1} = \arg\min_{\rho \in \mathcal{P}} \mathsf{KL}(\rho || || p_Z) + \frac{1}{2h} W_2^2(p_k, \rho).$$
(1)

Proposed JKO-iFlow

• Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto (JKO) scheme [Jordan et al., 1998]: starting at $p_0 = \rho_0 \in \mathcal{P}$, with step size h > 0, the JKO scheme at the k-th step is

$$p_{k+1} = \arg\min_{\rho \in \mathcal{P}} \mathsf{KL}(\rho || || p_Z) + \frac{1}{2h} W_2^2(p_k, \rho).$$
(1)

• It is equivalent to solve for the following transport map:

$$T_{k+1} = \underset{T:\mathbb{R}^d \to \mathbb{R}^d}{\arg\min} \operatorname{KL}(T_{\#}p_k \| \| p_Z) + \frac{1}{2h} \mathbb{E}_{x \sim p_k} \| x - T(x) \|^2.$$
(2)

Proposed JKO-iFlow

• Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto (JKO) scheme [Jordan et al., 1998]: starting at $p_0 = \rho_0 \in \mathcal{P}$, with step size h > 0, the JKO scheme at the k-th step is

$$p_{k+1} = \arg\min_{\rho \in \mathcal{P}} \mathsf{KL}(\rho || || p_Z) + \frac{1}{2h} W_2^2(p_k, \rho).$$
(1)

• It is equivalent to solve for the following transport map:

$$T_{k+1} = \underset{T:\mathbb{R}^d \to \mathbb{R}^d}{\arg\min} \operatorname{KL}(T_{\#}p_k \| \| p_Z) + \frac{1}{2h} \mathbb{E}_{x \sim p_k} \| x - T(x) \|^2.$$
(2)

• Theoretical analyses of solving (1), which is the W_2 proximal GD problem, are recently presented in [Cheng et al., 2023].

• Let k-th block $T_{\theta_k}(x) = x + \int_0^1 f_{\theta_k}(x(s), s)$ with parameters θ_k .

• Let k-th block $T_{\theta_k}(x) = x + \int_0^1 f_{\theta_k}(x(s), s)$ with parameters θ_k .

• Using the instantaneous change-of-variable formula [Chen et al., 2018], we can show that up to constants

$$\mathsf{KL}((T_{\theta_k})_{\#}p_k \| p_Z) = \mathbb{E}_{x \sim p_k} \bigg[\|T_{\theta_k}(x)\|^2 - \int_0^1 \nabla \cdot f_{\theta_k}(x(s), s) ds \bigg].$$

- Let k-th block $T_{\theta_k}(x) = x + \int_0^1 f_{\theta_k}(x(s), s)$ with parameters θ_k .
- Using the instantaneous change-of-variable formula [Chen et al., 2018], we can show that up to constants

$$\mathsf{KL}((T_{\theta_k})_{\#}p_k \| p_Z) = \mathbb{E}_{x \sim p_k} \bigg[\|T_{\theta_k}(x)\|^2 - \int_0^1 \nabla \cdot f_{\theta_k}(x(s), s) ds \bigg].$$

- Thus, we train the k-th block given the trained (k-1)-th block.
- The full model $T_{\theta} = T_{\theta_K} \circ \ldots \circ T_{\theta_1}$, where $(T_{\theta})_{\#} p_X \approx \mathcal{N}(0, I_d)$.

- Let k-th block $T_{\theta_k}(x) = x + \int_0^1 f_{\theta_k}(x(s), s)$ with parameters θ_k .
- Using the instantaneous change-of-variable formula [Chen et al., 2018], we can show that up to constants

$$\mathsf{KL}((T_{\theta_k})_{\#}p_k \| p_Z) = \mathbb{E}_{x \sim p_k} \bigg[\|T_{\theta_k}(x)\|^2 - \int_0^1 \nabla \cdot f_{\theta_k}(x(s), s) ds \bigg].$$

- Thus, we train the k-th block given the trained (k-1)-th block.
- The full model $T_{\theta} = T_{\theta_K} \circ \ldots \circ T_{\theta_1}$, where $(T_{\theta})_{\#} p_X \approx \mathcal{N}(0, I_d)$.

Figure 2: Toy example with 4 trained blocks. P_X = two moons.

- Benefits:
 - Simpler design and easier training of f_{θ_k} .
 - Allow stopping criterion to determine number of blocks.
 - No sampling as diffusion models or variational learning.

- Benefits:
 - Simpler design and easier training of f_{θ_k} .
 - Allow stopping criterion to determine number of blocks.
 - No sampling as diffusion models or variational learning.
- Additional techniques:

- Reparametrization adjusts the penalty term h_k to encourage more even W_2 block movements, due to exponential convergence by JKO theory.

- Refinement interpolates with $h_k = h_k/c$ to increase accuracy.

Figure 1: Before and after reparametrization and refinement.

Experiments-simulation

• Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al., 2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al., 2021], and one diffusion model [Song et al., 2021].

• **Takeaway:** JKO-iFlow shows better likelihood estimation and generative performance.

Figure 1: Two-dimensional datasets visualized as scatter plots.

Experiments-simulation (cont.)

- Benefits of reparametrization + refinement.
- **Takeaway:** improved performance on edges, at which we have few samples.

(a) Per-block W_2^2 over reparameterization iterations and refinement ('r-Iter 1' means one reparameterization iteration after refinement).

(b) Results at Iter 4 (middle) and r-Iter 1 (right). MMD and NLL values are shown in the title.

Figure 1: W_2 movement before and after reprametrization and refinement, as well as the generated samples.

Experiments-real data

- High-dimensional tabular daatsets (d = 6, 8, 43, 63).
- **Takeaway:** competitive or better performance under much less number of mini-batch SGD with same model capacity.

Data Set	Model	# Param	Training				Testing		
Duta Det	moder	urum	Time (h)	# Batches	Time/Batches (s)	Batch size	MMD-m	MMD-1	NLL
							τ: 1.73e-4	τ: 2.90e-4	
	JKO-iFlow	76K, L=4	0.07	0.76K	3.51e-1	10000	9.86e-5	2.40e-4	-0.12
	OT-Flow	76K	0.36	7.58K	1.71e-1	10000	7.58e-4	5.35e-4	0.32
POWER	FFJORD	76K, L=4	0.67	7.58K	3.18e-1	10000	9.89e-4	1.16e-3	0.63
d = 6	IGNN	304K, L=16	0.29	7.58K	1.38e-1	10000	1.93e-3	1.59e-3	0.95
	IResNet	304K, L=16	0.41	7.58K	1.95e-1	10000	3.92e-3	2.43e-2	3.37
	ScoreSDE	76K	0.06	7.58K	2.85e-2	10000	9.12e-4	6.08e-3	3.41
	ScoreSDE	76K	0.60	75.80K	2.85e-2	10000	7.12e-4	5.04e-3	3.33
	JKO-iFlow	57K, L=3	0.05	0.76K	2.63e-1	10000	3.86e-4	7.20e-4	-0.06
							τ: 1.85e-4	τ: 2.73e-4	
	JKO-iFlow	76K, L=4	0.07	0.76K	3.32e-1	5000	1.52e-4	5.00e-4	-7.65
	OT-Flow	76K	0.23	7.60K	1.09e-1	5000	1.99e-4	5.16e-4	-6.04
GAS	FFJORD	76K, L=4	0.65	7.60K	3.08e-1	5000	1.87e-3	3.28e-3	-2.65
d = 8	IGNN	304K, L=16	0.34	7.60K	1.61e-1	5000	6.74e-3	1.43e-2	-1.65
	IResNet	304K, L=16	0.46	7.60K	2.18e-1	5000	3.20e-3	2.73e-2	-1.17
	ScoreSDE	76K	0.03	7.60K	1.42e-2	5000	1.05e-3	8.36e-4	-3.69
	ScoreSDE	76K	0.30	76.00K	1.42e-2	5000	2.23e-4	3.38e-4	-5.58
	JKO-iFlow	95K, L=5	0.09	0.76K	4.15e-1	5000	1.51e-4	3.77e-4	-7.80
$\begin{array}{l} \textbf{MINIBOONE} \\ d = 43 \end{array}$							τ: 2.46e-4	τ: 3.75e-4	
	JKO-iFlow	112K, L=4	0.03	0.34K	3.61e-1	2000	9.66e-4	3.79e-4	12.55
	OT-Flow	112K	0.21	3.39K	2.23e-1	2000	6.58e-4	3.79e-4	11.44
	FFJORD	112K, L=4	0.28	3.39K	2.97e-1	2000	3.51e-3	4.12e-4	23.77
	IGNN	448K, L=16	0.63	3.39K	6.69e-1	2000	1.21e-2	4.01e-4	26.45
	IResNet	448K, L=16	0.71	3.39K	7.54e-1	2000	2.13e-3	4.16e-4	22.36
	ScoreSDE	112K	0.01	3.39K	6.37e-3	2000	5.86e-1	4.33e-4	27.38
	ScoreSDE	112K	0.10	33.90K	6.37e-3	2000	4.17e-3	3.87e-4	20.70
							τ: 1.38e-4	τ: 1.01e-4	
BSDS300 d = 63	JKO-iFlow	396K, L=4	0.05	1.03K	1.85e-1	1000	2.24e-4	1.91e-4	-153.82
	OT-Flow	396K	0.62	10.29K	2.17e-1	1000	5.43e-1	6.49e-1	-104.62
	FFJORD	396K, L=4	0.54	10.29K	1.89e-1	1000	5.60e-1	6.76e-1	-37.80
	IGNN	990K, L=10	1.71	10.29K	5.98e-1	1000	5.64e-1	6.86e-1	-37.68
	IResNet	990K, L=10	2.05	10.29K	7.17e-1	1000	5.50e-1	5.50e-1	-33.11
	ScoreSDE	396K	0.01	10.29K	3.50e-3	1000	5.61e-1	6.60e-1	-7.55
	ScoreSDE	396K	0.10	102.90K	3.50e-3	1000	5.61e-1	6.62e-1	-7.31
	JKO-iFlow	396K, L=4	0.08	1.03K	2.76e-1	5000	1.41e-4	8.83e-5	-156.68

Figure 1: Quantitative metrics (MMD and NLL)

Experiments-real data (cont.)

• Image data in the latent space of pre-trained variational auto-encoders [Esser et al., 2021].

(a) Generated MNIST digits. FID: 7.95.

(b) Generated CIFAR10 images. FID: 29.10.

(c) Generated Imagenet-32 images. FID: 20.10.

Conclusions

- Propose JKO-iFlow, a neural ODE model that trains each residual block in a step-wise fashion.
- Leads to improved performance with less computation against flow and diffusion models.

Xu, C., Cheng, X., and Xie, Y. Normalizing flow neural networks by JKO scheme. *NeurIPS 2023, spotlight.*