
Normalizing flow neural networks by JKO
scheme

Chen Xu1

joint work with Xiuyuan Cheng2 and Yao Xie1

1 School of Industrial and Systems Engineering,
Georgia Institute of Technology

2 Department of Mathematics, Duke Unversity

1 / 14



Goal

● Improve the design and training of
normalizing flows. Namely, invertible
transformation of X ↔ Z given samples
from PX .

● Allow efficient sampling from PX and
likelihood estimation log p(X).

● More computational and memory efficient
than existing methods.

(a) JKO-iFlow (b) Usual CNF

Figure 1:
X ↔ Z,Z ∼ N (0, Id).

2 / 14



Mathematical background

Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N (0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009].

3 / 14



Mathematical background

Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N (0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009].

3 / 14



Mathematical background

Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N (0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009].

3 / 14



Mathematical background (cont.)

Flow induced by ODE of x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

Normalizing flow models learn f using neural networks fθ.

Specifically, the objective is

min
θ

KL((Tθ)#pX ∣∣pZ) +R(θ). (2)

Tθ(x) = x + ∫
1
0 fθ(x(s), s), x(0) = x;

T# is the push-forward operation with (T#p)(A) = p(T −1(A)) for a
measureable set A.

(2) is equivalent to maximizing log p(X) up to constants
[Onken et al., 2021].

4 / 14



Mathematical background (cont.)

Flow induced by ODE of x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

Normalizing flow models learn f using neural networks fθ.

Specifically, the objective is

min
θ

KL((Tθ)#pX ∣∣pZ) +R(θ). (2)

Tθ(x) = x + ∫
1
0 fθ(x(s), s), x(0) = x;

T# is the push-forward operation with (T#p)(A) = p(T −1(A)) for a
measureable set A.

(2) is equivalent to maximizing log p(X) up to constants
[Onken et al., 2021].

4 / 14



Mathematical background (cont.)

Flow induced by ODE of x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

Normalizing flow models learn f using neural networks fθ.

Specifically, the objective is

min
θ

KL((Tθ)#pX ∣∣pZ) +R(θ). (2)

Tθ(x) = x + ∫
1
0 fθ(x(s), s), x(0) = x;

T# is the push-forward operation with (T#p)(A) = p(T −1(A)) for a
measureable set A.

(2) is equivalent to maximizing log p(X) up to constants
[Onken et al., 2021].

4 / 14



Current approaches

● Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken

et al., 2021] based on Neural ODE [Chen et al., 2019].

● Most existing continuous flows pre-specify the number of blocks L

to be trained

– Namely, the integral from [0,1] is broken into a sequence of L

smaller integrals each with fθl , or the model fθ itself is a composition of L

smaller ones of identical architecture.

● Challenges are
– Design: how to specify L.

– Computation: joint training of all L blocks.

– Memory: samples are passed through all L blocks.

5 / 14



Current approaches

● Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken

et al., 2021] based on Neural ODE [Chen et al., 2019].

● Most existing continuous flows pre-specify the number of blocks L

to be trained

– Namely, the integral from [0,1] is broken into a sequence of L

smaller integrals each with fθl , or the model fθ itself is a composition of L

smaller ones of identical architecture.

● Challenges are
– Design: how to specify L.

– Computation: joint training of all L blocks.

– Memory: samples are passed through all L blocks.

5 / 14



Current approaches

● Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken

et al., 2021] based on Neural ODE [Chen et al., 2019].

● Most existing continuous flows pre-specify the number of blocks L

to be trained

– Namely, the integral from [0,1] is broken into a sequence of L

smaller integrals each with fθl , or the model fθ itself is a composition of L

smaller ones of identical architecture.

● Challenges are
– Design: how to specify L.

– Computation: joint training of all L blocks.

– Memory: samples are passed through all L blocks.

5 / 14



Main contribution

Introduce block-wise training of CNF models, where each block

is allowed simpler architecture.

Efficient training with less computation and memory cost.

Better generative performance and likelihood estimation vs

CNF and diffusion models on simulated and real data.

6 / 14



Proposed JKO-iFlow

● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
ρ∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ). (1)

● It is equivalent to solve for the following transport map:

Tk+1 = argmin
T ∶Rd→Rd

KL(T#pk∥∥pZ) +
1

2h
Ex∼pk∥x − T (x)∥2. (2)

● Theoretical analyses of solving (1), which is the W2 proximal GD
problem, are recently presented in [Cheng et al., 2023].

7 / 14



Proposed JKO-iFlow

● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
ρ∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ). (1)

● It is equivalent to solve for the following transport map:

Tk+1 = argmin
T ∶Rd→Rd

KL(T#pk∥∥pZ) +
1

2h
Ex∼pk∥x − T (x)∥2. (2)

● Theoretical analyses of solving (1), which is the W2 proximal GD
problem, are recently presented in [Cheng et al., 2023].

7 / 14



Proposed JKO-iFlow

● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
ρ∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ). (1)

● It is equivalent to solve for the following transport map:

Tk+1 = argmin
T ∶Rd→Rd

KL(T#pk∥∥pZ) +
1

2h
Ex∼pk∥x − T (x)∥2. (2)

● Theoretical analyses of solving (1), which is the W2 proximal GD
problem, are recently presented in [Cheng et al., 2023].

7 / 14



Proposed JKO-iFlow (cont.)

● Let k-th block Tθk(x) = x + ∫
1
0 fθk(x(s), s) with parameters θk.

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we can show that up to constants

KL((Tθk)#pk∥pZ) = Ex∼pk [∥Tθk(x)∥
2 − ∫

1

0
∇ ⋅ fθk(x(s), s)ds] .

● Thus, we train the k-th block given the trained (k − 1)-th block.
● The full model Tθ = TθK ○ . . . ○ Tθ1 , where (Tθ)#pX ≈ N (0, Id).

Figure 2: Toy example with 4 trained blocks. PX = two moons.

8 / 14



Proposed JKO-iFlow (cont.)

● Let k-th block Tθk(x) = x + ∫
1
0 fθk(x(s), s) with parameters θk.

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we can show that up to constants

KL((Tθk)#pk∥pZ) = Ex∼pk [∥Tθk(x)∥
2 − ∫

1

0
∇ ⋅ fθk(x(s), s)ds] .

● Thus, we train the k-th block given the trained (k − 1)-th block.
● The full model Tθ = TθK ○ . . . ○ Tθ1 , where (Tθ)#pX ≈ N (0, Id).

Figure 2: Toy example with 4 trained blocks. PX = two moons.

8 / 14



Proposed JKO-iFlow (cont.)

● Let k-th block Tθk(x) = x + ∫
1
0 fθk(x(s), s) with parameters θk.

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we can show that up to constants

KL((Tθk)#pk∥pZ) = Ex∼pk [∥Tθk(x)∥
2 − ∫

1

0
∇ ⋅ fθk(x(s), s)ds] .

● Thus, we train the k-th block given the trained (k − 1)-th block.
● The full model Tθ = TθK ○ . . . ○ Tθ1 , where (Tθ)#pX ≈ N (0, Id).

Figure 2: Toy example with 4 trained blocks. PX = two moons.

8 / 14



Proposed JKO-iFlow (cont.)

● Let k-th block Tθk(x) = x + ∫
1
0 fθk(x(s), s) with parameters θk.

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we can show that up to constants

KL((Tθk)#pk∥pZ) = Ex∼pk [∥Tθk(x)∥
2 − ∫

1

0
∇ ⋅ fθk(x(s), s)ds] .

● Thus, we train the k-th block given the trained (k − 1)-th block.
● The full model Tθ = TθK ○ . . . ○ Tθ1 , where (Tθ)#pX ≈ N (0, Id).

Figure 2: Toy example with 4 trained blocks. PX = two moons.

8 / 14



Proposed JKO-iFlow (cont.)
● Benefits:
– Simpler design and easier training of fθk .

– Allow stopping criterion to determine number of blocks.

– No sampling as diffusion models or variational learning.

● Additional techniques:
– Reparametrization adjusts the penalty term hk to encourage more

even W2 block movements, due to exponential convergence by JKO theory.

– Refinement interpolates with hk = hk/c to increase accuracy.

Figure 1: Before and after reparametrization and refinement.

9 / 14



Proposed JKO-iFlow (cont.)
● Benefits:
– Simpler design and easier training of fθk .

– Allow stopping criterion to determine number of blocks.

– No sampling as diffusion models or variational learning.

● Additional techniques:
– Reparametrization adjusts the penalty term hk to encourage more

even W2 block movements, due to exponential convergence by JKO theory.

– Refinement interpolates with hk = hk/c to increase accuracy.

Figure 1: Before and after reparametrization and refinement.

9 / 14



Experiments–simulation
● Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,

2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,

2021], and one diffusion model [Song et al., 2021].

● Takeaway: JKO-iFlow shows better likelihood estimation and
generative performance.

Figure 1: Two-dimensional datasets visualized as scatter plots.
10 / 14



Experiments–simulation (cont.)

● Benefits of reparametrization + refinement.

● Takeaway: improved performance on edges, at which we have few

samples.

Figure 1: W2 movement before and after reprametrization and refinement,
as well as the generated samples.

11 / 14



Experiments–real data
● High-dimensional tabular daatsets (d = 6,8,43,63).
● Takeaway: competitive or better performance under much less number

of mini-batch SGD with same model capacity.

Figure 1: Quantitative metrics (MMD and NLL)

12 / 14



Experiments–real data (cont.)
● Image data in the latent space of pre-trained variational
auto-encoders [Esser et al., 2021].

(a) Generated MNIST digits. FID: 7.95.

(b) Generated CIFAR10 images. FID: 29.10. (c) Generated Imagenet-32 images. FID: 20.10.

Figure 4: Generated samples of MNIST, CIFAR10, and Imagenet-32 by JKO-iFlow model in latent space. We select 2 images per class for
CIFAR10 and 1 image per class for Imagenet-32. The FIDs are shown in subcaptions. Uncurated samples are shown in Figure A.6.

FIDs compared to most CNF baselines [Grathwohl et al., 2019, Behrmann et al., 2019, Chen et al.,
2019, Finlay et al., 2020].

5.5 Conditional generation

The problem aims to generate input samples X given a label Y from the conditional distribution
X|Y to be learned from data. We follow the approach in IGNN [Xu et al., 2022]. In this setting,
the JKO-iFlow network pushes from the distribution X|Y = k to the class-specific component in
the Gaussian mixture of H|Y = k, see Figure A.7b and Appendix C.2.4 for more details. We apply
JKO-iFlow to the Solar ramping dataset and compare it with the original IGNN model, and both
models use graph neural network layers in the residual blocks. The results are shown in Figure A.8,
where both the NLL and MMD-m metrics indicate the superior performance of JKO-iFlow and is
consistent with the visual comparison.

6 Discussion

The work can be extended in several directions. The application to larger-scale image datasets and
larger graphs will enlarge the scope of usage. To overcome the computational challenge faced by
neural ODE models for high dimensional input, e.g., images of higher resolution, one would need to
improve the training efficiency of the backpropagation in neural ODE in addition to the dimension
reduction techniques by VAE as been explored here. Another possibility is to combine the JKO-iFlow
scheme with other backbone flow models that are more suitable for the specific tasks. Meanwhile,
it would be interesting to extend the method to other problems for which CNF models have proven
to be effective. Examples include multi-dimensional probabilistic regression [Chen et al., 2018], a
plug-in to deep architectures such as StyleFlow [Abdal et al., 2021], and the application to Mean-field
Games [Huang et al., 2023].

Theoretically, the expressiveness of the flow model to generate a regular data distribution can be
analyzed based on Section 3.3. To sketch a road map, a block-wise approximation guarantee of f(x, t)
as in (12) can lead to approximation of the Fokker-Planck flow (3), which pushes forward the density
to be ✏-close to normality in T = log(1/✏) time, see (4). Reversing the time of the ODE then leads to
an approximation of the initial density ⇢0 = pX by flowing backward in time from T to zero. Further
analysis under technical assumptions is left to future work.

10

13 / 14



Conclusions

● Propose JKO-iFlow, a neural ODE model that trains each residual

block in a step-wise fashion.

● Leads to improved performance with less computation against flow

and diffusion models.

Xu, C., Cheng, X., and Xie, Y. Normalizing flow neural networks by JKO

scheme. NeurIPS 2023, spotlight.

14 / 14


