Skip to yearly menu bar Skip to main content


Search All 2022 Events
 

14 Results

<<   <   Page 1 of 2   >   >>
Poster
Tue 14:00 EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization
Laurent Condat · Kai Yi · Peter Richtarik
Poster
Tue 14:00 Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions
Kiwon Lee · Andrew Cheng · Elliot Paquette · Courtney Paquette
Workshop
Fri 9:45 Alternating minimization for generalized rank one matrix sensing: Sharp predictions from a random initialization
Kabir Chandrasekher
Poster
On the role of overparameterization in off-policy Temporal Difference learning with linear function approximation
Valentin Thomas
Workshop
Alternating minimization for generalized rank one matrix sensing: Sharp predictions from a random initialization
MENGQI LOU · Kabir Chandrasekher · Ashwin Pananjady
Poster
Thu 9:00 High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang
Workshop
TTERGM: Social Theory-Driven network simula
Yifan Huang · Clayton Barham · Eric Page · Pamela K Douglas
Poster
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
lingyu gu · Yongqi Du · yuan zhang · Di Xie · Shiliang Pu · Robert Qiu · Zhenyu Liao
Poster
Tue 9:00 Near-Optimal Randomized Exploration for Tabular Markov Decision Processes
Zhihan Xiong · Ruoqi Shen · Qiwen Cui · Maryam Fazel · Simon Du
Poster
Tue 14:00 Re-Analyze Gauss: Bounds for Private Matrix Approximation via Dyson Brownian Motion
Oren Mangoubi · Nisheeth Vishnoi
Poster
Wed 14:00 Split-kl and PAC-Bayes-split-kl Inequalities for Ternary Random Variables
Yi-Shan Wu · Yevgeny Seldin
Poster
Wed 14:00 On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow · Kaiyi Ji · Yingbin Liang