Workshop
|
|
How much human-like visual experience do current self-supervised learning algorithms need in order to achieve human-level object recognition?
Emin Orhan
|
|
Affinity Workshop
|
|
Fast Parameter Tuning for Rule-base Planners towards Human-like Driving
Shu Jiang · Szu-Hao Wu
|
|
Workshop
|
Sat 10:30
|
Simulating Human Gaze with Neural Visual Attention
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca
|
|
Workshop
|
|
The more human-like the language model, the more surprisal is the best predictor of N400 amplitude
James Michaelov · Benjamin Bergen
|
|
Workshop
|
Sat 9:55
|
The more human-like the language model, the more surprisal is the best predictor of N400 amplitude
James Michaelov · Benjamin Bergen
|
|
Poster
|
Tue 9:00
|
How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?
Chengxu Zhuang · Ziyu Xiang · Yoon Bai · Xiaoxuan Jia · Nicholas Turk-Browne · Kenneth Norman · James J DiCarlo · Dan Yamins
|
|
Workshop
|
|
Improving the Strength of Human-Like Models in Chess
Saumik Narayanan · Kassa Korley · Chien-Ju Ho · Siddhartha Sen
|
|
Poster
|
|
HumanLiker: A Human-like Object Detector to Model the Manual Labeling Process
Haoran Wei · Ping Guo · Yangguang Zhu · Chenglong Liu · Peng Wang
|
|
Poster
|
Tue 14:00
|
Diversity vs. Recognizability: Human-like generalization in one-shot generative models
Victor Boutin · Lakshya Singhal · Xavier Thomas · Thomas Serre
|
|
Workshop
|
Sat 9:08
|
Simulating Human Gaze with Neural Visual Attention
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca
|
|