Workshop
|
|
ProxSkip for Stochastic Variational Inequalities: A Federated Learning Algorithm for Provable Communication Acceleration
Siqi Zhang · Nicolas Loizou
|
|
Workshop
|
|
A Stochastic Conjugate Subgradient Algorithm for Kernelized Support Vector Machines: The Evidence
Di Zhang · Suvrajeet Sen
|
|
Poster
|
Thu 9:00
|
Recruitment Strategies That Take a Chance
Gregory Kehne · Ariel Procaccia · Jingyan Wang
|
|
Poster
|
Tue 9:00
|
Learning from Stochastically Revealed Preference
John Birge · Xiaocheng Li · Chunlin Sun
|
|
Poster
|
Tue 9:00
|
Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization
Liang Zhang · Kiran Thekumparampil · Sewoong Oh · Niao He
|
|
Poster
|
Tue 9:00
|
On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
Sadhika Malladi · Kaifeng Lyu · Abhishek Panigrahi · Sanjeev Arora
|
|
Poster
|
|
Faster Stochastic Algorithms for Minimax Optimization under Polyak-{\L}ojasiewicz Condition
Lesi Chen · Boyuan Yao · Luo Luo
|
|
Poster
|
Thu 14:00
|
Benign Underfitting of Stochastic Gradient Descent
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman
|
|
Poster
|
Wed 14:00
|
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
Jasmin Brandt · Viktor Bengs · Björn Haddenhorst · Eyke Hüllermeier
|
|
Workshop
|
|
A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces
Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc Bellemare
|
|
Poster
|
Thu 14:00
|
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
Mathieu Dagréou · Pierre Ablin · Samuel Vaiter · Thomas Moreau
|
|
Poster
|
Wed 14:00
|
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow · Kaiyi Ji · Yingbin Liang
|
|