Workshop
|
|
Benchmarking Graph Neural Network-based Imputation Methods on Single-Cell Transcriptomics Data
Han-Bo Li · Ramon Viñas Torné · Pietro Lió
|
|
Workshop
|
|
Improving Classification and Data Imputation for Single-Cell Transcriptomics with Graph Neural Networks
Han-Bo Li · Ramon Viñas Torné · Pietro Lió
|
|
Workshop
|
|
CoSpar identifies early cell fate biases from single cell transcriptomic and lineage information
Shou-Wen Wang · Michael Herriges · Kilian Hurley · Darrell Kotton
|
|
Workshop
|
|
Learning Spatially-Aware Representations of Transcriptomic Data via Transfer Learning
Minsheng Hao · Lei Wei · Xuegong Zhang
|
|
Workshop
|
|
Bi-channel Masked Graph Autoencoders for Spatially Resolved Single-cell Transcriptomics Data Imputation
Hongzhi Wen · Wei Jin · Jiayuan Ding · Christopher Xu · Yuying Xie · Jiliang Tang
|
|
Workshop
|
|
Interpretable visualization of single cell data using Janus autoencoders
Gokul Gowri · Phillipa Richter · Xiaokang Lun · Peng Yin
|
|
Workshop
|
|
A single-cell gene expression language model
William Connell · Umair Khan · Michael Keiser
|
|
Workshop
|
|
Energy-based Modelling for Single-cell Data Annotation
Tianyi Liu · Philip Fradkin · Lazar Atanackovic · Leo J Lee
|
|
Workshop
|
|
Continuous cell-state density inference and applications for single-cell data
Dominik Otto · Manu Setty · Brennan Dury
|
|
Workshop
|
|
Learning relationships between histone modifications in single cells
Jake Yeung · Maria Florescu · Peter Zeller · Buys de Barbanson · Max Wellenstein · Alexander van Oudenaarden
|
|
Expo Talk Panel
|
Mon 14:00
|
Integrating modern machine learning and single cell technologies into drug target discovery - lessons from the frontline.
Lindsay Edwards
|
|
Poster
|
Thu 14:00
|
Supervised Training of Conditional Monge Maps
Charlotte Bunne · Andreas Krause · Marco Cuturi
|
|