Workshop
|
|
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence
Diyuan Wu · Vyacheslav Kungurtsev · Marco Mondelli
|
|
Poster
|
Tue 14:00
|
DReS-FL: Dropout-Resilient Secure Federated Learning for Non-IID Clients via Secret Data Sharing
Jiawei Shao · Yuchang Sun · Songze Li · Jun Zhang
|
|
Poster
|
Thu 9:00
|
AD-DROP: Attribution-Driven Dropout for Robust Language Model Fine-Tuning
Tao Yang · JInghao Deng · Xiaojun Quan · Qifan Wang · Shaoliang Nie
|
|
Poster
|
Wed 9:00
|
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Djordje Miladinovic · Kumar Shridhar · Kushal Jain · Max Paulus · Joachim M Buhmann · Carl Allen
|
|
Workshop
|
|
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun · Mirian Hipolito Garcia · Dimitrios Dimitriadis · Christopher Jermaine · Anastasios Kyrillidis
|
|
Workshop
|
|
Feature Restricted Group Dropout for Robust Electronic Health Record Predictions
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi
|
|
Poster
|
|
DropCov: A Simple yet Effective Method for Improving Deep Architectures
Qilong Wang · Mingze Gao · Zhaolin Zhang · Jiangtao Xie · Peihua Li · Qinghua Hu
|
|
Workshop
|
|
Dropout Disagreement: A Recipe for Group Robustness with Fewer Annotations
Tyler LaBonte · Abhishek Kumar · Vidya Muthukumar
|
|
Poster
|
Tue 9:00
|
LTMD: Learning Improvement of Spiking Neural Networks with Learnable Thresholding Neurons and Moderate Dropout
SIQI WANG · Tee Hiang Cheng · Meng-Hiot Lim
|
|