Skip to yearly menu bar Skip to main content


Fixed-Distance Hamiltonian Monte Carlo

Hadi Mohasel Afshar · Sally Cripps

Keywords: [ Reversible Jump ] [ Markov chain Monte Carlo ] [ No-U-Turn sampler ] [ Sampling ] [ Hamiltonian Monte Carlo ] [ RJMCMC ]


We propose a variation of the Hamiltonian Monte Carlo sampling (HMC) where the equations of motion are simulated for a fixed traversed distance rather than the conventional fixed simulation time. This new mechanism tends to generate proposals that have higher target probability values. The momentum distribution that is naturally joint with our Fixed-Distance HMC (FDHMC), and keeps the proposal acceptance probability close to 1, is not Gaussian and generates momentums that have a higher expected magnitude. This translates into a reduced correlation between the successive MCMC states and according to our experimental results, leads to an improvement in terms of the effective sample size per gradient when compared to the baseline HMC and No-U-Turn (NUTS) samplers.

Chat is not available.