Poster

Eliciting Thinking Hierarchy without a Prior

Yuqing Kong · Yunqi Li · Yubo Zhang · Zhihuan Huang · Jinzhao Wu

Hall J (level 1) #919

Keywords: [ bounded rationality ] [ cognitive hierarchy ] [ crowdsourcing ] [ information elicitation ] [ peer prediction ]


Abstract:

When we use the wisdom of the crowds, we usually rank the answers according to their popularity, especially when we cannot verify the answers. However, this can be very dangerous when the majority make systematic mistakes. A fundamental question arises: can we build a hierarchy among the answers without any prior where the higher-ranking answers, which may not be supported by the majority, are from more sophisticated people? To address the question, we propose 1) a novel model to describe people's thinking hierarchy; 2) two algorithms to learn the thinking hierarchy without any prior; 3) a novel open-response based crowdsourcing approach based on the above theoretic framework. In addition to theoretic justifications, we conduct four empirical crowdsourcing studies and show that a) the accuracy of the top-ranking answers learned by our approach is much higher than that of plurality voting (In one question, the plurality answer is supported by 74 respondents but the correct answer is only supported by 3 respondents. Our approach ranks the correct answer the highest without any prior); b) our model has a high goodness-of-fit, especially for the questions where our top-ranking answer is correct. To the best of our knowledge, we are the first to propose a thinking hierarchy model with empirical validations in the general problem-solving scenarios; and the first to propose a practical open-response-based crowdsourcing approach that beats plurality voting without any prior.

Chat is not available.