Skip to yearly menu bar Skip to main content


Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination

Masaki Adachi · Satoshi Hayakawa · Martin Jørgensen · Harald Oberhauser · Michael A Osborne

Hall J (level 1) #719

Keywords: [ Approximate Bayesian Computation ] [ Model Evidence ] [ Kernel Quadrature ] [ Bayesian Quadrature ] [ Active Learning ] [ Gaussian process ]


Calculation of Bayesian posteriors and model evidences typically requires numerical integration. Bayesian quadrature (BQ), a surrogate-model-based approach to numerical integration, is capable of superb sample efficiency, but its lack of parallelisation has hindered its practical applications. In this work, we propose a parallelised (batch) BQ method, employing techniques from kernel quadrature, that possesses an empirically exponential convergence rate.Additionally, just as with Nested Sampling, our method permits simultaneous inference of both posteriors and model evidence.Samples from our BQ surrogate model are re-selected to give a sparse set of samples, via a kernel recombination algorithm, requiring negligible additional time to increase the batch size.Empirically, we find that our approach significantly outperforms the sampling efficiency of both state-of-the-art BQ techniques and Nested Sampling in various real-world datasets, including lithium-ion battery analytics.

Chat is not available.