Skip to yearly menu bar Skip to main content


Co-Modality Graph Contrastive Learning for Imbalanced Node Classification

Yiyue Qian · Chunhui Zhang · Yiming Zhang · Qianlong Wen · Yanfang Ye · Chuxu Zhang

Hall J (level 1) #208

Keywords: [ multi-modal learning ] [ Graph neural network ] [ Graph Contrastive Learning ]


Graph contrastive learning (GCL), leveraging graph augmentations to convert graphs into different views and further train graph neural networks (GNNs), has achieved considerable success on graph benchmark datasets. Yet, there are still some gaps in directly applying existing GCL methods to real-world data. First, handcrafted graph augmentations require trials and errors, but still can not yield consistent performance on multiple tasks. Second, most real-world graph data present class-imbalanced distribution but existing GCL methods are not immune to data imbalance. Therefore, this work proposes to explicitly tackle these challenges, via a principled framework called \textit{\textbf{C}o-\textbf{M}odality \textbf{G}raph \textbf{C}ontrastive \textbf{L}earning} (\textbf{CM-GCL}) to automatically generate contrastive pairs and further learn balanced representation over unlabeled data. Specifically, we design inter-modality GCL to automatically generate contrastive pairs (e.g., node-text) based on rich node content. Inspired by the fact that minority samples can be ``forgotten'' by pruning deep neural networks, we naturally extend network pruning to our GCL framework for mining minority nodes. Based on this, we co-train two pruned encoders (e.g., GNN and text encoder) in different modalities by pushing the corresponding node-text pairs together and the irrelevant node-text pairs away. Meanwhile, we propose intra-modality GCL by co-training non-pruned GNN and pruned GNN, to ensure node embeddings with similar attribute features stay closed. Last, we fine-tune the GNN encoder on downstream class-imbalanced node classification tasks. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art baseline models and learns more balanced representations on real-world graphs. Our source code is available at

Chat is not available.