Skip to yearly menu bar Skip to main content


Human-AI Shared Control via Policy Dissection

Quanyi Li · Zhenghao Peng · Haibin Wu · Lan Feng · Bolei Zhou

Hall J (level 1) #800

Keywords: [ Interpetability ] [ human-AI interaction ] [ Decision and Control ]


Human-AI shared control allows human to interact and collaborate with autonomous agents to accomplish control tasks in complex environments. Previous Reinforcement Learning (RL) methods attempted goal-conditioned designs to achieve human-controllable policies at the cost of redesigning the reward function and training paradigm. Inspired by the neuroscience approach to investigate the motor cortex in primates, we develop a simple yet effective frequency-based approach called Policy Dissection to align the intermediate representation of the learned neural controller with the kinematic attributes of the agent behavior. Without modifying the neural controller or retraining the model, the proposed approach can convert a given RL-trained policy into a human-controllable policy. We evaluate the proposed approach on many RL tasks such as autonomous driving and locomotion. The experiments show that human-AI shared control system achieved by Policy Dissection in driving task can substantially improve the performance and safety in unseen traffic scenes. With human in the inference loop, the locomotion robots also exhibit versatile controllable motion skills even though they are only trained to move forward. Our results suggest the promising direction of implementing human-AI shared autonomy through interpreting the learned representation of the autonomous agents. Code and demo videos are available at

Chat is not available.