Skip to yearly menu bar Skip to main content


Talk
in
Workshop: Table Representation Learning

STable: Table Generation Framework for Encoder-Decoder Models

Michał Pietruszka · Michał Turski · Łukasz Borchmann · Tomasz Dwojak · Gabriela Pałka · Karolina Szyndler · Dawid Jurkiewicz · Łukasz Garncarek

Keywords: [ Natural Language Processing ] [ transformer ] [ Encoder-Decoder ] [ key information extraction ] [ text-to-table ]


Abstract:

The output structure of database-like tables, consisting of values structured in horizontal rows and vertical columns identifiable by name, can cover a wide range of NLP tasks. Following this constatation, we propose a framework for text-to-table neural models applicable to problems such as extraction of line items, joint entity and relation extraction, or knowledge base population. The permutation-based decoder of our proposal is a generalized sequential method that comprehends information from all cells in the table. The training maximizes the expected log-likelihood for a table's content across all random permutations of the factorization order. During the content inference, we exploit the model's ability to generate cells in any order by searching over possible orderings to maximize the model's confidence and avoid substantial error accumulation, which other sequential models are prone to. Experiments demonstrate a high practical value of the framework, which establishes state-of-the-art results on several challenging datasets, outperforming previous solutions by up to 15%.

Chat is not available.