Skip to yearly menu bar Skip to main content

Workshop: Machine Learning and the Physical Sciences

Improved Training of Physics-informed Neural Networks using Energy-Based priors: A Study on Electrical Impedance Tomography

Akarsh Pokkunuru · Pedram Rooshenas · Thilo Strauss · Anuj Abhishek · Taufiquar Khan


Physics-informed neural networks (PINNs) are attracting significant attention for solving partial differential equation (PDE) based inverse problems, including electrical impedance tomography (EIT). EIT is non-linear and especially its inverse problem is highly ill-posed. Therefore, successful training of PINN is extremely sensitive to interplay between different loss terms and hyper-parameters, including the learning rate. In this work, we propose a Bayesian approach through data-driven energy-based model (EBM) as a prior, to improve the overall accuracy and quality of tomographic reconstruction. In particular, the EBM is trained over the possible solutions of the PDEs with different boundary conditions. By imparting such prior onto physics-based training, PINN convergence is expedited by more than ten times faster to the PDE’s solution. Evaluation outcome shows that our proposed method is more robust for solving the EIT problem.

Chat is not available.