Spotlight

Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning

Gen Li · Laixi Shi · Yuxin Chen · Yuantao Gu · Yuejie Chi

Achieving sample efficiency in online episodic reinforcement learning (RL) requires optimally balancing exploration and exploitation. When it comes to a finite-horizon episodic Markov decision process with $S$ states, $A$ actions and horizon length $H$, substantial progress has been achieved towards characterizing the minimax-optimal regret, which scales on the order of $\sqrt{H^2SAT}$ (modulo log factors) with $T$ the total number of samples. While several competing solution paradigms have been proposed to minimize regret, they are either memory-inefficient, or fall short of optimality unless the sample size exceeds an enormous threshold (e.g., $S^6A^4 \,\mathrm{poly}(H)$ for existing model-free methods).To overcome such a large sample size barrier to efficient RL, we design a novel model-free algorithm, with space complexity $O(SAH)$, that achieves near-optimal regret as soon as the sample size exceeds the order of $SA\,\mathrm{poly}(H)$. In terms of this sample size requirement (also referred to the initial burn-in cost), our method improves --- by at least a factor of $S^5A^3$ --- upon any prior memory-efficient algorithm that is asymptotically regret-optimal. Leveraging the recently introduced variance reduction strategy (also called {\em reference-advantage decomposition}), the proposed algorithm employs an {\em early-settled} reference update rule, with the aid of two Q-learning sequences with upper and lower confidence bounds. The design principle of our early-settled variance reduction method might be of independent interest to other RL settings that involve intricate exploration-exploitation trade-offs.

Chat is not available.