Skip to yearly menu bar Skip to main content


Spotlight

Differential Privacy Dynamics of Langevin Diffusion and Noisy Gradient Descent

Rishav Chourasia · Jiayuan Ye · Reza Shokri

Abstract:

What is the information leakage of an iterative randomized learning algorithm about its training data, when the internal state of the algorithm is \emph{private}? How much is the contribution of each specific training epoch to the information leakage through the released model? We study this problem for noisy gradient descent algorithms, and model the \emph{dynamics} of R\'enyi differential privacy loss throughout the training process. Our analysis traces a provably \emph{tight} bound on the R\'enyi divergence between the pair of probability distributions over parameters of models trained on neighboring datasets. We prove that the privacy loss converges exponentially fast, for smooth and strongly convex loss functions, which is a significant improvement over composition theorems (which over-estimate the privacy loss by upper-bounding its total value over all intermediate gradient computations). For Lipschitz, smooth, and strongly convex loss functions, we prove optimal utility with a small gradient complexity for noisy gradient descent algorithms.

Chat is not available.