Poster
|
Fri 8:30 |
An Uncertainty Principle is a Price of Privacy-Preserving Microdata John Abowd · Robert Ashmead · Ryan Cumings-Menon · Simson Garfinkel · Daniel Kifer · Philip Leclerc · William Sexton · Ashley Simpson · Christine Task · Pavel Zhuravlev |
|
Workshop
|
Tue 2:45 |
SoK: Privacy-preserving Clustering (Extended Abstract) Helen Möllering · Hossein Yalame · Thomas Schneider · Aditya Hegde |
|
Workshop
|
Tue 12:15 |
Privacy-Aware Rejection Sampling Jordan Awan · Vinayak Rao |
|
Workshop
|
Privacy-Aware Rejection Sampling Jordan Awan · Vinayak Rao |
||
Workshop
|
SoK: Privacy-preserving Clustering (Extended Abstract) Helen Möllering · Hossein Yalame · Aditya Hegde · Thomas Schneider |
||
Affinity Workshop
|
Privacy-Preseving Federated Multi-Task Linear Regression: A One-shot Linear Mixing Approach Inspired by Graph Regularization Harlin Lee |
||
Poster
|
Wed 0:30 |
Invertible Tabular GANs: Killing Two Birds with One Stone for Tabular Data Synthesis JAEHOON LEE · Jihyeon Hyeong · Jinsung Jeon · Noseong Park · Jihoon Cho |
|
Poster
|
Thu 8:30 |
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization Pranav Subramani · Nicholas Vadivelu · Gautam Kamath |
|
Poster
|
Thu 8:30 |
Differentially Private Sampling from Distributions Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith · Marika Swanberg |
|
Poster
|
Thu 0:30 |
Instance-optimal Mean Estimation Under Differential Privacy Ziyue Huang · Yuting Liang · Ke Yi |
|
Poster
|
Thu 8:30 |
Locally differentially private estimation of functionals of discrete distributions Cristina Butucea · Yann ISSARTEL |
|
Poster
|
Thu 16:30 |
Auditing Black-Box Prediction Models for Data Minimization Compliance Bashir Rastegarpanah · Krishna Gummadi · Mark Crovella |