Skip to yearly menu bar Skip to main content


On sensitivity of meta-learning to support data

Mayank Agarwal · Mikhail Yurochkin · Yuekai Sun

Keywords: [ Few Shot Learning ] [ Meta Learning ] [ Machine Learning ] [ Robustness ] [ Vision ]


Meta-learning algorithms are widely used for few-shot learning. For example, image recognition systems that readily adapt to unseen classes after seeing only a few labeled examples. Despite their success, we show that modern meta-learning algorithms are extremely sensitive to the data used for adaptation, i.e. support data. In particular, we demonstrate the existence of (unaltered, in-distribution, natural) images that, when used for adaptation, yield accuracy as low as 4\% or as high as 95\% on standard few-shot image classification benchmarks. We explain our empirical findings in terms of class margins, which in turn suggests that robust and safe meta-learning requires larger margins than supervised learning.

Chat is not available.