Processing math: 100%
Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Deep Reinforcement Learning

On Using Hamiltonian Monte Carlo Sampling for Reinforcement Learning Problems in High-dimension

Udari Madhushani · Biswadip Dey · Naomi Leonard · Amit Chakraborty


Abstract: Value function based reinforcement learning (RL) algorithms, for example, Q-learning, learn optimal policies from datasets of actions, rewards, and state transitions. However, when the underlying state transition dynamics are stochastic and evolve on a high-dimensional space, generating independent and identically distributed (IID) data samples for creating these datasets poses a significant challenge due to the intractability of the associated normalizing integral. In these scenarios, Hamiltonian Monte Carlo (HMC) sampling offers a computationally tractable way to generate data for training RL algorithms. In this paper, we introduce a framework, called Hamiltonian Q-Learning, that demonstrates, both theoretically and empirically, that Q values can be learned from a dataset generated by HMC samples of actions, rewards, and state transitions. Furthermore, to exploit the underlying low-rank structure of the Q function, Hamiltonian Q-Learning uses a matrix completion algorithm for reconstructing the updated Q function from Q value updates over a much smaller subset of state-action pairs. Thus, by providing an efficient way to apply Q-learning in stochastic, high-dimensional settings, the proposed approach broadens the scope of RL algorithms for real-world applications.

Chat is not available.