Skip to yearly menu bar Skip to main content

Workshop: Algorithmic Fairness through the lens of Causality and Robustness

Fairness for Robust Learning to Rank

Omid Memarrast · Ashkan Rezaei · Rizal Fathony · Brian Ziebart


While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure for different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system based on the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods.