Session
Track 2 Session 2
Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
Clarice Poon · Jingwei Liang
The alternating direction method of multipliers (ADMM) is one of the most widely used first-order optimisation methods in the literature owing to its simplicity, flexibility and efficiency. Over the years, numerous efforts are made to improve the performance of the method, such as the inertial technique. By studying the geometric properties of ADMM, we discuss the limitations of current inertial accelerated ADMM and then present and analyze an adaptive acceleration scheme for the method. Numerical experiments on problems arising from image processing, statistics and machine learning demonstrate the advantages of the proposed acceleration approach.
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He · Gao Huang · Yang Yuan
Despite the non-convex nature of their loss functions, deep neural networks are known to generalize well when optimized with stochastic gradient descent (SGD). Recent work conjectures that SGD with proper configuration is able to find wide and flat local minima, which are correlated with good generalization performance. In this paper, we observe that local minima of modern deep networks are more than being flat or sharp. Instead, at a local minimum there exist many asymmetric directions such that the loss increases abruptly along one side, and slowly along the opposite side – we formally define such minima as asymmetric valleys. Under mild assumptions, we first prove that for asymmetric valleys, a solution biased towards the flat side generalizes better than the exact empirical minimizer. Then, we show that performing weight averaging along the SGD trajectory implicitly induces such biased solutions. This provides theoretical explanations for a series of intriguing phenomena observed in recent work [25, 5, 51]. Finally, extensive empirical experiments on both modern deep networks and simple 2 layer networks are conducted to validate our assumptions and analyze the intriguing properties of asymmetric valleys.
Reducing the variance in online optimization by transporting past gradients
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux
Most stochastic optimization methods use gradients once before discarding them. While variance reduction methods have shown that reusing past gradients can be beneficial when there is a finite number of datapoints, they do not easily extend to the online setting. One issue is the staleness due to using past gradients. We propose to correct this staleness using the idea of {\em implicit gradient transport} (IGT) which transforms gradients computed at previous iterates into gradients evaluated at the current iterate without using the Hessian explicitly. In addition to reducing the variance and bias of our updates over time, IGT can be used as a drop-in replacement for the gradient estimate in a number of well-understood methods such as heavy ball or Adam. We show experimentally that it achieves state-of-the-art results on a wide range of architectures and benchmarks. Additionally, the IGT gradient estimator yields the optimal asymptotic convergence rate for online stochastic optimization in the restricted setting where the Hessians of all component functions are equal.
Who is Afraid of Big Bad Minima? Analysis of gradient-flow in spiked matrix-tensor models
Stefano Sarao Mannelli · Giulio Biroli · Chiara Cammarota · Florent Krzakala · Lenka Zdeborová
Gradient-based algorithms are effective for many machine learning tasks, but despite ample recent effort and some progress, it often remains unclear why they work in practice in optimising high-dimensional non-convex functions and why they find good minima instead of being trapped in spurious ones.Here we present a quantitative theory explaining this behaviour in a spiked matrix-tensor model.Our framework is based on the Kac-Rice analysis of stationary points and a closed-form analysis of gradient-flow originating from statistical physics. We show that there is a well defined region of parameters where the gradient-flow algorithm finds a good global minimum despite the presence of exponentially many spurious local minima. We show that this is achieved by surfing on saddles that have strong negative direction towards the global minima, a phenomenon that is connected to a BBP-type threshold in the Hessian describing the critical points of the landscapes.
Fast and Provable ADMM for Learning with Generative Priors
Fabian Latorre · Armin eftekhari · Volkan Cevher
In this work, we propose a (linearized) Alternating Direction Method-of-Multipliers (ADMM) algorithm for minimizing a convex function subject to a nonconvex constraint. We focus on the special case where such constraint arises from the specification that a variable should lie in the range of a neural network. This is motivated by recent successful applications of Generative Adversarial Networks (GANs) in tasks like compressive sensing, denoising and robustness against adversarial examples. The derived rates for our algorithm are characterized in terms of certain geometric properties of the generator network, which we show hold for feedforward architectures, under mild assumptions. Unlike gradient descent (GD), it can efficiently handle non-smooth objectives as well as exploit efficient partial minimization procedures, thus being faster in many practical scenarios.
Complexity of Highly Parallel Non-Smooth Convex Optimization
Sebastien Bubeck · Qijia Jiang · Yin-Tat Lee · Yuanzhi Li · Aaron Sidford
A landmark result of non-smooth convex optimization is that gradient descent is an optimal algorithm whenever the number of computed gradients is smaller than the dimension $d$. In this paper we study the extension of this result to the parallel optimization setting. Namely we consider optimization algorithms interacting with a highly parallel gradient oracle, that is one that can answer $\mathrm{poly}(d)$ gradient queries in parallel. We show that in this case gradient descent is optimal only up to $\tilde{O}(\sqrt{d})$ rounds of interactions with the oracle. The lower bound improves upon a decades old construction by Nemirovski which proves optimality only up to $d^{1/3}$ rounds (as recently observed by Balkanski and Singer), and the suboptimality of gradient descent after $\sqrt{d}$ rounds was already observed by Duchi, Bartlett and Wainwright. In the latter regime we propose a new method with improved complexity, which we conjecture to be optimal. The analysis of this new method is based upon a generalized version of the recent results on optimal acceleration for highly smooth convex optimization.
Necessary and Sufficient Geometries for Gradient Methods
Daniel Levy · John Duchi
We study the impact of the constraint set and gradient geometry on the convergence of online and stochastic methods for convex optimization, providing a characterization of the geometries for which stochastic gradient and adaptive gradient methods are (minimax) optimal. In particular, we show that when the constraint set is quadratically convex, diagonally pre-conditioned stochastic gradient methods are minimax optimal. We further provide a converse that shows that when the constraints are not quadratically convex---for example, any $\ell_p$-ball for $p < 2$---the methods are far from optimal. Based on this, we can provide concrete recommendations for when one should use adaptive, mirror or stochastic gradient methods.
SySCD: A System-Aware Parallel Coordinate Descent Algorithm
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell
In this paper we propose a novel parallel stochastic coordinate descent (SCD) algorithm with convergence guarantees that exhibits strong scalability. We start by studying a state-of-the-art parallel implementation of SCD and identify scalability as well as system-level performance bottlenecks of the respective implementation. We then take a principled approach to develop a new SCD variant which is designed to avoid the identified system bottlenecks, such as limited scaling due to coherence traffic of model sharing across threads, and inefficient CPU cache accesses. Our proposed system-aware parallel coordinate descent algorithm (SySCD) scales to many cores and across numa nodes, and offers a consistent bottom line speedup in training time of up to x12 compared to an optimized asynchronous parallel SCD algorithm and up to x42, compared to state-of-the-art GLM solvers (scikit-learn, Vowpal Wabbit, and H2O) on a range of datasets and multi-core CPU architectures.
Learning Positive Functions with Pseudo Mirror Descent
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He
The nonparametric learning of positive-valued functions appears widely in machine learning, especially in the context of estimating intensity functions of point processes. Yet, existing approaches either require computing expensive projections or semidefinite relaxations, or lack convexity and theoretical guarantees after introducing nonlinear link functions. In this paper, we propose a novel algorithm, pseudo mirror descent, that performs efficient estimation of positive functions within a Hilbert space without expensive projections. The algorithm guarantees positivity by performing mirror descent with an appropriately selected Bregman divergence, and a pseudo-gradient is adopted to speed up the gradient evaluation procedure in practice. We analyze both asymptotic and nonasymptotic convergence of the algorithm. Through simulations, we show that pseudo mirror descent outperforms the state-of-the-art benchmarks for learning intensities of Poisson and multivariate Hawkes processes, in terms of both computational efficiency and accuracy.
UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher
We propose a novel adaptive, accelerated algorithm for the stochastic constrained convex optimization setting.Our method, which is inspired by the Mirror-Prox method, \emph{simultaneously} achieves the optimal rates for smooth/non-smooth problems with either deterministic/stochastic first-order oracles. This is done without any prior knowledge of the smoothness nor the noise properties of the problem. To the best of our knowledge, this is the first adaptive, unified algorithm that achieves the optimal rates in the constrained setting. We demonstrate the practical performance of our framework through extensive numerical experiments.
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials. Experiments validate the effectiveness of our method in practice.
Learning dynamic polynomial proofs
Alhussein Fawzi · Mateusz Malinowski · Hamza Fawzi · Omar Fawzi
Polynomial inequalities lie at the heart of many mathematical disciplines. In this paper, we consider the fundamental computational task of automatically searching for proofs of polynomial inequalities. We adopt the framework of semi-algebraic proof systems that manipulate polynomial inequalities via elementary inference rules that infer new inequalities from the premises. These proof systems are known to be very powerful, but searching for proofs remains a major difficulty. In this work, we introduce a machine learning based method to search for a dynamic proof within these proof systems. We propose a deep reinforcement learning framework that learns an embedding of the polynomials and guides the choice of inference rules, taking the inherent symmetries of the problem as an inductive bias. We compare our approach with powerful and widely-studied linear programming hierarchies based on static proof systems, and show that our method reduces the size of the linear program by several orders of magnitude while also improving performance. These results hence pave the way towards augmenting powerful and well-studied semi-algebraic proof systems with machine learning guiding strategies for enhancing the expressivity of such proof systems.