Session
Track 4 Session 5
Optimizing Generalized Rate Metrics with Three Players
Harikrishna Narasimhan · Andrew Cotter · Maya Gupta
We present a general framework for solving a large class of learning problems with non-linear functions of classification rates. This includes problems where one wishes to optimize a non-decomposable performance metric such as the F-measure or G-mean, and constrained training problems where the classifier needs to satisfy non-linear rate constraints such as predictive parity fairness, distribution divergences or churn ratios. We extend previous two-player game approaches for constrained optimization to an approach with three players to decouple the classifier rates from the non-linear objective, and seek to find an equilibrium of the game. Our approach generalizes many existing algorithms, and makes possible new algorithms with more flexibility and tighter handling of non-linear rate constraints. We provide convergence guarantees for convex functions of rates, and show how our methodology can be extended to handle sums-of-ratios of rates. Experiments on different fairness tasks confirm the efficacy of our approach.
Modeling Conceptual Understanding in Image Reference Games
Rodolfo Corona Rodriguez · Stephan Alaniz · Zeynep Akata
An agent who interacts with a wide population of other agents needs to be aware that there may be variations in their understanding of the world. Furthermore, the machinery which they use to perceive may be inherently different, as is the case between humans and machines. In this work, we present both an image reference game between a speaker and a population of listeners where reasoning about the concepts other agents can comprehend is necessary and a model formulation with this capability. We focus on reasoning about the conceptual understanding of others, as well as adapting to novel gameplay partners and dealing with differences in perceptual machinery. Our experiments on three benchmark image/attribute datasets suggest that our learner indeed encodes information directly pertaining to the understanding of other agents, and that leveraging this information is crucial for maximizing gameplay performance.
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architecture -- prototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Yi Chern Tan · L. Elisa Celis
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Paradoxes in Fair Machine Learning
Paul Gölz · Anson Kahng · Ariel Procaccia
Equalized odds is a statistical notion of fairness in machine learning that ensures that classification algorithms do not discriminate against protected groups. We extend equalized odds to the setting of cardinality-constrained fair classification, where we have a bounded amount of a resource to distribute. This setting coincides with classic fair division problems, which allows us to apply concepts from that literature in parallel to equalized odds. In particular, we consider the axioms of resource monotonicity, consistency, and population monotonicity, all three of which relate different allocation instances to prevent paradoxes. Using a geometric characterization of equalized odds, we examine the compatibility of equalized odds with these axioms. We empirically evaluate the cost of allocation rules that satisfy both equalized odds and axioms of fair division on a dataset of FICO credit scores.
Multi-Criteria Dimensionality Reduction with Applications to Fairness
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala
Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space.
Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.