Skip to yearly menu bar Skip to main content


Poster

Block Coordinate Regularization by Denoising

Yu Sun · Jiaming Liu · Ulugbek Kamilov

Keywords: [ Convex Optimization ] [ Optimization ] [ Algorithms ] [ Sparsity and Compressed Sensing ]

[ ]
[ Paper [ Poster
2019 Poster

Abstract:

We consider the problem of estimating a vector from its noisy measurements using a prior specified only through a denoising function. Recent work on plug-and-play priors (PnP) and regularization-by-denoising (RED) has shown the state-of-the-art performance of estimators under such priors in a range of imaging tasks. In this work, we develop a new block coordinate RED algorithm that decomposes a large-scale estimation problem into a sequence of updates over a small subset of the unknown variables. We theoretically analyze the convergence of the algorithm and discuss its relationship to the traditional proximal optimization. Our analysis complements and extends recent theoretical results for RED-based estimation methods. We numerically validate our method using several denoiser priors, including those based on convolutional neural network (CNN) denoisers.

Chat is not available.