Session
Thu Track 3 -- Session 2
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li · Jian Li
We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. Our main contribution lies in the analysis of ProxSVRG+. It recovers several existing convergence results and improves/generalizes them (in terms of the number of stochastic gradient oracle calls and proximal oracle calls). In particular, ProxSVRG+ generalizes the best results given by the SCSG algorithm, recently proposed by [Lei et al., 2017] for the smooth nonconvex case. ProxSVRG+ is also more straightforward than SCSG and yields simpler analysis. Moreover, ProxSVRG+ outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of minibatch sizes, which partially solves an open problem proposed in [Reddi et al., 2016]. Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG [Reddi et al., 2016]. Moreover, for nonconvex functions satisfied Polyak-\L{}ojasiewicz condition, we prove that ProxSVRG+ achieves a global linear convergence rate without restart unlike ProxSVRG. Thus, it can \emph{automatically} switch to the faster linear convergence in some regions as long as the objective function satisfies the PL condition locally in these regions. Finally, we conduct several experiments and the experimental results are consistent with the theoretical results.
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Insu Han · Haim Avron · Jinwoo Shin
A large class of machine learning techniques requires the solution of optimization problems involving spectral functions of parametric matrices, e.g. log-determinant and nuclear norm. Unfortunately, computing the gradient of a spectral function is generally of cubic complexity, as such gradient descent methods are rather expensive for optimizing objectives involving the spectral function. Thus, one naturally turns to stochastic gradient methods in hope that they will provide a way to reduce or altogether avoid the computation of full gradients. However, here a new challenge appears: there is no straightforward way to compute unbiased stochastic gradients for spectral functions. In this paper, we develop unbiased stochastic gradients for spectral-sums, an important subclass of spectral functions. Our unbiased stochastic gradients are based on combining randomized trace estimators with stochastic truncation of the Chebyshev expansions. A careful design of the truncation distribution allows us to offer distributions that are variance-optimal, which is crucial for fast and stable convergence of stochastic gradient methods. We further leverage our proposed stochastic gradients to devise stochastic methods for objective functions involving spectral-sums, and rigorously analyze their convergence rate. The utility of our methods is demonstrated in numerical experiments.
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen · Georgios Giannakis · Tao Sun · Wotao Yin
This paper presents a new class of gradient methods for distributed machine learning that adaptively skip the gradient calculations to learn with reduced communication and computation. Simple rules are designed to detect slowly-varying gradients and, therefore, trigger the reuse of outdated gradients. The resultant gradient-based algorithms are termed Lazily Aggregated Gradient --- justifying our acronym LAG used henceforth. Theoretically, the merits of this contribution are: i) the convergence rate is the same as batch gradient descent in strongly-convex, convex, and nonconvex cases; and, ii) if the distributed datasets are heterogeneous (quantified by certain measurable constants), the communication rounds needed to achieve a targeted accuracy are reduced thanks to the adaptive reuse of lagged gradients. Numerical experiments on both synthetic and real data corroborate a significant communication reduction compared to alternatives.
Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames
Geneviève Robin · Hoi-To Wai · Julie Josse · Olga Klopp · Eric Moulines
Many applications of machine learning involve the analysis of large data frames -- matrices collecting heterogeneous measurements (binary, numerical, counts, etc.) across samples -- with missing values. Low-rank models, as studied by Udell et al. (2016), are popular in this framework for tasks such as visualization, clustering and missing value imputation. Yet, available methods with statistical guarantees and efficient optimization do not allow explicit modeling of main additive effects such as row and column, or covariate effects. In this paper, we introduce a low-rank interaction and sparse additive effects (LORIS) model which combines matrix regression on a dictionary and low-rank design, to estimate main effects and interactions simultaneously. We provide statistical guarantees in the form of upper bounds on the estimation error of both components. Then, we introduce a mixed coordinate gradient descent (MCGD) method which provably converges sub-linearly to an optimal solution and is computationally efficient for large scale data sets. We show on simulated and survey data that the method has a clear advantage over current practices.
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
Direct Runge-Kutta Discretization Achieves Acceleration
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie
We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N^{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local flatness condition on the objective, under which rates even faster than $\mathcal{O}(N^{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning. We provide numerical experiments that verify the theoretical rates predicted by our results.
Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives
Song Zhou · Swati Gupta · Madeleine Udell
The original simplicial method (OSM), a variant of the classic Kelley’s cutting plane method, has been shown to converge to the minimizer of a composite convex and submodular objective, though no rate of convergence for this method was known. Moreover, OSM is required to solve subproblems in each iteration whose size grows linearly in the number of iterations. We propose a limited memory version of Kelley’s method (L-KM) and of OSM that requires limited memory (at most n+ 1 constraints for an n-dimensional problem) independent of the iteration. We prove convergence for L-KM when the convex part of the objective g is strongly convex and show it converges linearly when g is also smooth. Our analysis relies on duality between minimization of the composite convex and submodular objective and minimization of a convex function over the submodular base polytope. We introduce a limited memory version, L-FCFW, of the Fully-Corrective Frank-Wolfe (FCFW) method with approximate correction, to solve the dual problem. We show that L-FCFW and L-KM are dual algorithms that produce the same sequence of iterates; hence both converge linearly (when g is smooth and strongly convex) and with limited memory. We propose L-KM to minimize composite convex and submodular objectives; however, our results on L-FCFW hold for general polytopes and may be of independent interest.
(Probably) Concave Graph Matching
Haggai Maron · Yaron Lipman
In this paper we address the graph matching problem. Following the recent works of \cite{zaslavskiy2009path,Vestner2017} we analyze and generalize the idea of concave relaxations. We introduce the concepts of \emph{conditionally concave} and \emph{probably conditionally concave} energies on polytopes and show that they encapsulate many instances of the graph matching problem, including matching Euclidean graphs and graphs on surfaces. We further prove that local minima of probably conditionally concave energies on general matching polytopes (\eg, doubly stochastic) are with high probability extreme points of the matching polytope (\eg, permutations).
Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro
We suggest a general oracle-based framework that captures parallel stochastic optimization in different parallelization settings described by a dependency graph, and derive generic lower bounds in terms of this graph. We then use the framework and derive lower bounds to study several specific parallel optimization settings, including delayed updates and parallel processing with intermittent communication. We highlight gaps between lower and upper bounds on the oracle complexity, and cases where the ``natural'' algorithms are not known to be optimal.
Smoothed analysis of the low-rank approach for smooth semidefinite programs
Thomas Pumir · Samy Jelassi · Nicolas Boumal
We consider semidefinite programs (SDPs) of size $n$ with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix $Y$ of size $n\times k$ such that $X=YY^*$ is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced, and positive semidefiniteness is naturally enforced. However, optimization in $Y$ is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided $k$ is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To this end, and under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with $k$ scaling like the square root of the number of constraints (up to log factors). We particularize our results to an SDP relaxation of phase retrieval.
Wasserstein Distributionally Robust Kalman Filtering
Soroosh Shafieezadeh Abadeh · Viet Anh Nguyen · Daniel Kuhn · Peyman Mohajerin Esfahani
We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex program. We further devise a Frank-Wolfe algorithm for this convex program whose direction-searching subproblem can be solved in a quasi-closed form. Using these ingredients, we introduce a distributionally robust Kalman filter that hedges against model risk.
Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters
Pavel Dvurechenskii · Darina Dvinskikh · Alexander Gasnikov · Cesar Uribe · Angelia Nedich
We study the decentralized distributed computation of discrete approximations for the regularized Wasserstein barycenter of a finite set of continuous probability measures distributedly stored over a network. We assume there is a network of agents/machines/computers, and each agent holds a private continuous probability measure and seeks to compute the barycenter of all the measures in the network by getting samples from its local measure and exchanging information with its neighbors. Motivated by this problem, we develop, and analyze, a novel accelerated primal-dual stochastic gradient method for general stochastic convex optimization problems with linear equality constraints. Then, we apply this method to the decen- tralized distributed optimization setting to obtain a new algorithm for the distributed semi-discrete regularized Wasserstein barycenter problem. Moreover, we show explicit non-asymptotic complexity for the proposed algorithm. Finally, we show the effectiveness of our method on the distributed computation of the regularized Wasserstein barycenter of univariate Gaussian and von Mises distributions, as well as some applications to image aggregation.
Robust Hypothesis Testing Using Wasserstein Uncertainty Sets
Rui Gao · Liyan Xie · Yao Xie · Huan Xu
We develop a novel computationally efficient and general framework for robust hypothesis testing. The new framework features a new way to construct uncertainty sets under the null and the alternative distributions, which are sets centered around the empirical distribution defined via Wasserstein metric, thus our approach is data-driven and free of distributional assumptions. We develop a convex safe approximation of the minimax formulation and show that such approximation renders a nearly-optimal detector among the family of all possible tests. By exploiting the structure of the least favorable distribution, we also develop a tractable reformulation of such approximation, with complexity independent of the dimension of observation space and can be nearly sample-size-independent in general. Real-data example using human activity data demonstrated the excellent performance of the new robust detector.
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou · Zhe Wang · Yingbin Liang
Cubic-regularized Newton's method (CR) is a popular algorithm that guarantees to produce a second-order stationary solution for solving nonconvex optimization problems. However, existing understandings of convergence rate of CR are conditioned on special types of geometrical properties of the objective function. In this paper, we explore the asymptotic convergence rate of CR by exploiting the ubiquitous Kurdyka-Lojasiewicz (KL) property of the nonconvex objective functions. In specific, we characterize the asymptotic convergence rate of various types of optimality measures for CR including function value gap, variable distance gap, gradient norm and least eigenvalue of the Hessian matrix. Our results fully characterize the diverse convergence behaviors of these optimality measures in the full parameter regime of the KL property. Moreover, we show that the obtained asymptotic convergence rates of CR are order-wise faster than those of first-order gradient descent algorithms under the KL property.