Skip to yearly menu bar Skip to main content


Session

Thu Track 2 -- Session 2

Abstract:
Chat is not available.

Thu 6 Dec. 12:30 - 12:35 PST

Spotlight
Hyperbolic Neural Networks

Octavian Ganea · Gary Becigneul · Thomas Hofmann

Hyperbolic spaces have recently gained momentum in the context of machine learning due to their high capacity and tree-likeliness properties. However, the representational power of hyperbolic geometry is not yet on par with Euclidean geometry, firstly because of the absence of corresponding hyperbolic neural network layers. Here, we bridge this gap in a principled manner by combining the formalism of Möbius gyrovector spaces with the Riemannian geometry of the Poincaré model of hyperbolic spaces. As a result, we derive hyperbolic versions of important deep learning tools: multinomial logistic regression, feed-forward and recurrent neural networks. This allows to embed sequential data and perform classification in the hyperbolic space. Empirically, we show that, even if hyperbolic optimization tools are limited, hyperbolic sentence embeddings either outperform or are on par with their Euclidean variants on textual entailment and noisy-prefix recognition tasks.

Thu 6 Dec. 12:35 - 12:40 PST

Spotlight
Norm matters: efficient and accurate normalization schemes in deep networks

Elad Hoffer · Ron Banner · Itay Golan · Daniel Soudry

Over the past few years, Batch-Normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work, we present a novel view on the purpose and function of normalization methods and weight-decay, as tools to decouple weights' norm from the underlying optimized objective. This property highlights the connection between practices such as normalization, weight decay and learning-rate adjustments. We suggest several alternatives to the widely used $L^2$ batch-norm, using normalization in $L^1$ and $L^\infty$ spaces that can substantially improve numerical stability in low-precision implementations as well as provide computational and memory benefits. We demonstrate that such methods enable the first batch-norm alternative to work for half-precision implementations. Finally, we suggest a modification to weight-normalization, which improves its performance on large-scale tasks.

Thu 6 Dec. 12:40 - 12:45 PST

Spotlight
Constructing Fast Network through Deconstruction of Convolution

Yunho Jeon · Junmo Kim

Convolutional neural networks have achieved great success in various vision tasks; however, they incur heavy resource costs. By using deeper and wider networks, network accuracy can be improved rapidly. However, in an environment with limited resources (e.g., mobile applications), heavy networks may not be usable. This study shows that naive convolution can be deconstructed into a shift operation and pointwise convolution. To cope with various convolutions, we propose a new shift operation called active shift layer (ASL) that formulates the amount of shift as a learnable function with shift parameters. This new layer can be optimized end-to-end through backpropagation and it can provide optimal shift values. Finally, we apply this layer to a light and fast network that surpasses existing state-of-the-art networks.

Thu 6 Dec. 12:45 - 12:50 PST

Spotlight
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.

Thu 6 Dec. 12:50 - 13:05 PST

Oral
Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning

Supasorn Suwajanakorn · Noah Snavely · Jonathan Tompson · Mohammad Norouzi

This paper presents KeypointNet, an end-to-end geometric reasoning framework to learn an optimal set of category-specific keypoints, along with their detectors to predict 3D keypoints in a single 2D input image. We demonstrate this framework on 3D pose estimation task by proposing a differentiable pose objective that seeks the optimal set of keypoints for recovering the relative pose between two views of an object. Our network automatically discovers a consistent set of keypoints across viewpoints of a single object as well as across all object instances of a given object class. Importantly, we find that our end-to-end approach using no ground-truth keypoint annotations outperforms a fully supervised baseline using the same neural network architecture for the pose estimation task. The discovered 3D keypoints across the car, chair, and plane categories of ShapeNet are visualized at https://keypoints.github.io/

Thu 6 Dec. 13:05 - 13:10 PST

Spotlight
Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction

Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum

Successful approaches to program induction require a hand-engineered domain-specific language (DSL), constraining the space of allowed programs and imparting prior knowledge of the domain. We contribute a program induction algorithm that learns a DSL while jointly training a neural network to efficiently search for programs in the learned DSL. We use our model to synthesize functions on lists, edit text, and solve symbolic regression problems, showing how the model learns a domain-specific library of program components for expressing solutions to problems in the domain.

Thu 6 Dec. 13:10 - 13:15 PST

Spotlight
Learning Loop Invariants for Program Verification

Xujie Si · Hanjun Dai · Mukund Raghothaman · Mayur Naik · Le Song

A fundamental problem in program verification concerns inferring loop invariants. The problem is undecidable and even practical instances are challenging. Inspired by how human experts construct loop invariants, we propose a reasoning framework Code2Inv that constructs the solution by multi-step decision making and querying an external program graph memory block. By training with reinforcement learning, Code2Inv captures rich program features and avoids the need for ground truth solutions as supervision. Compared to previous learning tasks in domains with graph-structured data, it addresses unique challenges, such as a binary objective function and an extremely sparse reward that is given by an automated theorem prover only after the complete loop invariant is proposed. We evaluate Code2Inv on a suite of 133 benchmark problems and compare it to three state-of-the-art systems. It solves 106 problems compared to 73 by a stochastic search-based system, 77 by a heuristic search-based system, and 100 by a decision tree learning-based system. Moreover, the strategy learned can be generalized to new programs: compared to solving new instances from scratch, the pre-trained agent is more sample efficient in finding solutions.

Thu 6 Dec. 13:15 - 13:20 PST

Spotlight
DeepProbLog: Neural Probabilistic Logic Programming

Robin Manhaeve · Sebastijan Dumancic · Angelika Kimmig · Thomas Demeester · Luc De Raedt

We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques can be adapted for the new language. Our experiments demonstrate that DeepProbLog supports (i) both symbolic and subsymbolic representations and inference, (ii) program induction, (iii) probabilistic (logic) programming, and (iv) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.

Thu 6 Dec. 13:20 - 13:25 PST

Spotlight
Learning to Infer Graphics Programs from Hand-Drawn Images

Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum

We introduce a model that learns to convert simple hand drawings into graphics programs written in a subset of \LaTeX.~The model combines techniques from deep learning and program synthesis. We learn a convolutional neural network that proposes plausible drawing primitives that explain an image. These drawing primitives are a specification (spec) of what the graphics program needs to draw. We learn a model that uses program synthesis techniques to recover a graphics program from that spec. These programs have constructs like variable bindings, iterative loops, or simple kinds of conditionals. With a graphics program in hand, we can correct errors made by the deep network and extrapolate drawings.

Thu 6 Dec. 13:25 - 13:40 PST

Oral
Learning to Reconstruct Shapes from Unseen Classes

Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu

From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.

Thu 6 Dec. 13:40 - 13:45 PST

Spotlight
Improving Neural Program Synthesis with Inferred Execution Traces

Richard Shin · Illia Polosukhin · Dawn Song

The task of program synthesis, or automatically generating programs that are consistent with a provided specification, remains a challenging task in artificial intelligence. As in other fields of AI, deep learning-based end-to-end approaches have made great advances in program synthesis. However, more so than other fields such as computer vision, program synthesis provides greater opportunities to explicitly exploit structured information such as execution traces, which contain a superset of the information input/output pairs. While they are highly useful for program synthesis, as execution traces are more difficult to obtain than input/output pairs, we use the insight that we can split the process into two parts: infer the trace from the input/output example, then infer the program from the trace. This simple modification leads to state-of-the-art results in program synthesis in the Karel domain, improving accuracy to 81.3% from the 77.12% of prior work.

Thu 6 Dec. 13:45 - 13:50 PST

Spotlight
ResNet with one-neuron hidden layers is a Universal Approximator

Hongzhou Lin · Stefanie Jegelka

We demonstrate that a very deep ResNet with stacked modules that have one neuron per hidden layer and ReLU activation functions can uniformly approximate any Lebesgue integrable function in d dimensions, i.e. \ell_1(R^d). Due to the identity mapping inherent to ResNets, our network has alternating layers of dimension one and d. This stands in sharp contrast to fully connected networks, which are not universal approximators if their width is the input dimension d [21,11]. Hence, our result implies an increase in representational power for narrow deep networks by the ResNet architecture.

Thu 6 Dec. 13:50 - 13:55 PST

Spotlight
Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation

Liwei Wang · Lunjia Hu · Jiayuan Gu · Zhiqiang Hu · Yue Wu · Kun He · John Hopcroft

It is widely believed that learning good representations is one of the main reasons for the success of deep neural networks. Although highly intuitive, there is a lack of theory and systematic approach quantitatively characterizing what representations do deep neural networks learn. In this work, we move a tiny step towards a theory and better understanding of the representations. Specifically, we study a simpler problem: How similar are the representations learned by two networks with identical architecture but trained from different initializations. We develop a rigorous theory based on the neuron activation subspace match model. The theory gives a complete characterization of the structure of neuron activation subspace matches, where the core concepts are maximum match and simple match which describe the overall and the finest similarity between sets of neurons in two networks respectively. We also propose efficient algorithms to find the maximum match and simple matches. Finally, we conduct extensive experiments using our algorithms. Experimental results suggest that, surprisingly, representations learned by the same convolutional layers of networks trained from different initializations are not as similar as prevalently expected, at least in terms of subspace match.

Thu 6 Dec. 13:55 - 14:00 PST

Spotlight
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels

Zhilu Zhang · Mert Sabuncu

Deep neural networks (DNNs) have achieved tremendous success in a variety of applications across many disciplines. Yet, their superior performance comes with the expensive cost of requiring correctly annotated large-scale datasets. Moreover, due to DNNs' rich capacity, errors in training labels can hamper performance. To combat this problem, mean absolute error (MAE) has recently been proposed as a noise-robust alternative to the commonly-used categorical cross entropy (CCE) loss. However, as we show in this paper, MAE can perform poorly with DNNs and large-scale datasets. Here, we present a theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and CCE. Proposed loss functions can be readily applied with any existing DNN architecture and algorithm, while yielding good performance in a wide range of noisy label scenarios. We report results from experiments conducted with CIFAR-10, CIFAR-100 and FASHION-MNIST datasets and synthetically generated noisy labels.