Session
Wed Track 1 -- Session 1
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem
Sampath Kannan · Jamie Morgenstern · Aaron Roth · Bo Waggoner · Zhiwei Steven Wu
Bandit learning is characterized by the tension between long-term exploration and short-term exploitation. However, as has recently been noted, in settings in which the choices of the learning algorithm correspond to important decisions about individual people (such as criminal recidivism prediction, lending, and sequential drug trials), exploration corresponds to explicitly sacrificing the well-being of one individual for the potential future benefit of others. In such settings, one might like to run a ``greedy'' algorithm, which always makes the optimal decision for the individuals at hand --- but doing this can result in a catastrophic failure to learn. In this paper, we consider the linear contextual bandit problem and revisit the performance of the greedy algorithm.
We give a smoothed analysis, showing that even when contexts may be chosen by an adversary, small perturbations of the adversary's choices suffice for the algorithm to achieve ``no regret'', perhaps (depending on the specifics of the setting) with a constant amount of initial training data. This suggests that in slightly perturbed environments, exploration and exploitation need not be in conflict in the linear setting.
Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs
Han Shao · Xiaotian Yu · Irwin King · Michael R Lyu
In linear stochastic bandits, it is commonly assumed that payoffs are with sub-Gaussian noises. In this paper, under a weaker assumption on noises, we study the problem of \underline{lin}ear stochastic {\underline b}andits with h{\underline e}avy-{\underline t}ailed payoffs (LinBET), where the distributions have finite moments of order $1+\epsilon$, for some $\epsilon\in (0,1]$. We rigorously analyze the regret lower bound of LinBET as $\Omega(T^{\frac{1}{1+\epsilon}})$, implying that finite moments of order 2 (i.e., finite variances) yield the bound of $\Omega(\sqrt{T})$, with $T$ being the total number of rounds to play bandits. The provided lower bound also indicates that the state-of-the-art algorithms for LinBET are far from optimal. By adopting median of means with a well-designed allocation of decisions and truncation based on historical information, we develop two novel bandit algorithms, where the regret upper bounds match the lower bound up to polylogarithmic factors. To the best of our knowledge, we are the first to solve LinBET optimally in the sense of the polynomial order on $T$. Our proposed algorithms are evaluated based on synthetic datasets, and outperform the state-of-the-art results.
End-to-End Differentiable Physics for Learning and Control
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter
We present a differentiable physics engine that can be integrated as a module in deep neural networks for end-to-end learning. As a result, structured physics knowledge can be embedded into larger systems, allowing them, for example, to match observations by performing precise simulations, while achieves high sample efficiency. Specifically, in this paper we demonstrate how to perform backpropagation analytically through a physical simulator defined via a linear complementarity problem. Unlike traditional finite difference methods, such gradients can be computed analytically, which allows for greater flexibility of the engine. Through experiments in diverse domains, we highlight the system's ability to learn physical parameters from data, efficiently match and simulate observed visual behavior, and readily enable control via gradient-based planning methods. Code for the engine and experiments is included with the paper.
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric
While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This results in weakly-communicating or multi-chain MDPs. In this paper, we introduce TUCRL, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with $S^c$ communicating states, $A$ actions and $\Gamma^c \leq S^c$ possible communicating next states, we derive a $O(D^c \sqrt{\Gamma^c S^c A T})$ regret bound, where $D^c$ is the diameter (i.e., the length of the longest shortest path between any two states) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP. Finally, we report numerical simulations supporting our theoretical findings and showing how TUCRL overcomes the limitations of the state-of-the-art.
Exploration in Structured Reinforcement Learning
Jungseul Ok · Alexandre Proutiere · Damianos Tranos
We address reinforcement learning problems with finite state and action spaces where the underlying MDP has some known structure that could be potentially exploited to minimize the exploration rates of suboptimal (state, action) pairs. For any arbitrary structure, we derive problem-specific regret lower bounds satisfied by any learning algorithm. These lower bounds are made explicit for unstructured MDPs and for those whose transition probabilities and average reward functions are Lipschitz continuous w.r.t. the state and action. For Lipschitz MDPs, the bounds are shown not to scale with the sizes S and A of the state and action spaces, i.e., they are smaller than c log T where T is the time horizon and the constant c only depends on the Lipschitz structure, the span of the bias function, and the minimal action sub-optimality gap. This contrasts with unstructured MDPs where the regret lower bound typically scales as SA log T. We devise DEL (Directed Exploration Learning), an algorithm that matches our regret lower bounds. We further simplify the algorithm for Lipschitz MDPs, and show that the simplified version is still able to efficiently exploit the structure.
Acceleration through Optimistic No-Regret Dynamics
Jun-Kun Wang · Jacob Abernethy
We consider the problem of minimizing a smooth convex function by reducing the optimization to computing the Nash equilibrium of a particular zero-sum convex-concave game. Zero-sum games can be solved using online learning dynamics, where a classical technique involves simulating two no-regret algorithms that play against each other and, after $T$ rounds, the average iterate is guaranteed to solve the original optimization problem with error decaying as $O(\log T/T)$. In this paper we show that the technique can be enhanced to a rate of $O(1/T^2)$ by extending recent work \cite{RS13,SALS15} that leverages \textit{optimistic learning} to speed up equilibrium computation. The resulting optimization algorithm derived from this analysis coincides \textit{exactly} with the well-known \NA \cite{N83a} method, and indeed the same story allows us to recover several variants of the Nesterov's algorithm via small tweaks. We are also able to establish the accelerated linear rate for a function which is both strongly-convex and smooth. This methodology unifies a number of different iterative optimization methods: we show that the \HB algorithm is precisely the non-optimistic variant of \NA, and recent prior work already established a similar perspective on \FW \cite{AW17,ALLW18}.
On Oracle-Efficient PAC RL with Rich Observations
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire
We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation -- accessing policy and value function classes exclusively through standard optimization primitives -- and therefore represent computationally efficient alternatives to prior algorithms that require enumeration. With stochastic hidden state dynamics, we prove that the only known sample-efficient algorithm, OLIVE, cannot be implemented in the oracle model. We also present several examples that illustrate fundamental challenges of tractable PAC reinforcement learning in such general settings.
Constant Regret, Generalized Mixability, and Mirror Descent
Zakaria Mhammedi · Robert Williamson
We consider the setting of prediction with expert advice; a learner makes predictions by aggregating those of a group of experts. Under this setting, and for the right choice of loss function and ``mixing'' algorithm, it is possible for the learner to achieve a constant regret regardless of the number of prediction rounds. For example, a constant regret can be achieved for \emph{mixable} losses using the \emph{aggregating algorithm}. The \emph{Generalized Aggregating Algorithm} (GAA) is a name for a family of algorithms parameterized by convex functions on simplices (entropies), which reduce to the aggregating algorithm when using the \emph{Shannon entropy} $\operatorname{S}$. For a given entropy $\Phi$, losses for which a constant regret is possible using the \textsc{GAA} are called $\Phi$-mixable. Which losses are $\Phi$-mixable was previously left as an open question. We fully characterize $\Phi$-mixability and answer other open questions posed by \cite{Reid2015}. We show that the Shannon entropy $\operatorname{S}$ is fundamental in nature when it comes to mixability; any $\Phi$-mixable loss is necessarily $\operatorname{S}$-mixable, and the lowest worst-case regret of the \textsc{GAA} is achieved using the Shannon entropy. Finally, by leveraging the connection between the \emph{mirror descent algorithm} and the update step of the GAA, we suggest a new \emph{adaptive} generalized aggregating algorithm and analyze its performance in terms of the regret bound.
Efficient Online Portfolio with Logarithmic Regret
Haipeng Luo · Chen-Yu Wei · Kai Zheng
We study the decades-old problem of online portfolio management and propose the first algorithm with logarithmic regret that is not based on Cover's Universal Portfolio algorithm and admits much faster implementation. Specifically Universal Portfolio enjoys optimal regret $\mathcal{O}(N\ln T)$ for $N$ financial instruments over $T$ rounds, but requires log-concave sampling and has a large polynomial running time. Our algorithm, on the other hand, ensures a slightly larger but still logarithmic regret of $\mathcal{O}(N^2(\ln T)^4)$, and is based on the well-studied Online Mirror Descent framework with a novel regularizer that can be implemented via standard optimization methods in time $\mathcal{O}(TN^{2.5})$ per round. The regret of all other existing works is either polynomial in $T$ or has a potentially unbounded factor such as the inverse of the smallest price relative.
Solving Large Sequential Games with the Excessive Gap Technique
Christian Kroer · Gabriele Farina · Tuomas Sandholm
There has been tremendous recent progress on equilibrium-finding algorithms for zero-sum imperfect-information extensive-form games, but there has been a puzzling gap between theory and practice. \emph{First-order methods} have significantly better theoretical convergence rates than any \emph{counterfactual-regret minimization (CFR)} variant. Despite this, CFR variants have been favored in practice. Experiments with first-order methods have only been conducted on small- and medium-sized games because those methods are complicated to implement in this setting, and because CFR variants have been enhanced extensively for over a decade they perform well in practice. In this paper we show that a particular first-order method, a state-of-the-art variant of the \emph{excessive gap technique}---instantiated with the \emph{dilated entropy distance function}---can efficiently solve large real-world problems competitively with CFR and its variants. We show this on large endgames encountered by the \emph{Libratus} poker AI, which recently beat top human poker specialist professionals at no-limit Texas hold'em. We show experimental results on our variant of the excessive gap technique as well as a prior version. We introduce a numerically friendly implementation of the smoothed best response computation associated with first-order methods for extensive-form game solving. We present, to our knowledge, the first GPU implementation of a first-order method for extensive-form games. We present comparisons of several excessive gap technique and CFR variants.