Skip to yearly menu bar Skip to main content


Session

Tue Track 3 -- Session 1

Abstract:
Chat is not available.

Tue 4 Dec. 7:05 - 7:20 PST

Oral
Phase Retrieval Under a Generative Prior

Paul Hand · Oscar Leong · Vlad Voroninski

We introduce a novel deep-learning inspired formulation of the \textit{phase retrieval problem}, which asks to recover a signal $y_0 \in \R^n$ from $m$ quadratic observations, under structural assumptions on the underlying signal. As is common in many imaging problems, previous methodologies have considered natural signals as being sparse with respect to a known basis, resulting in the decision to enforce a generic sparsity prior. However, these methods for phase retrieval have encountered possibly fundamental limitations, as no computationally efficient algorithm for sparse phase retrieval has been proven to succeed with fewer than $O(k^2\log n)$ generic measurements, which is larger than the theoretical optimum of $O(k \log n)$. In this paper, we sidestep this issue by considering a prior that a natural signal is in the range of a generative neural network $G : \R^k \rightarrow \R^n$. We introduce an empirical risk formulation that has favorable global geometry for gradient methods, as soon as $m = O(k)$, under the model of a multilayer fully-connected neural network with random weights. Specifically, we show that there exists a descent direction outside of a small neighborhood around the true $k$-dimensional latent code and a negative multiple thereof. This formulation for structured phase retrieval thus benefits from two effects: generative priors can more tightly represent natural signals than sparsity priors, and this empirical risk formulation can exploit those generative priors at an information theoretically optimal sample complexity, unlike for a sparsity prior. We corroborate these results with experiments showing that exploiting generative models in phase retrieval tasks outperforms both sparse and general phase retrieval methods.

Tue 4 Dec. 7:20 - 7:25 PST

Spotlight
Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere

Yanjun Li · Yoram Bresler

Multichannel blind deconvolution is the problem of recovering an unknown signal $f$ and multiple unknown channels $x_i$ from convolutional measurements $y_i=x_i \circledast f$ ($i=1,2,\dots,N$). We consider the case where the $x_i$'s are sparse, and convolution with $f$ is invertible. Our nonconvex optimization formulation solves for a filter $h$ on the unit sphere that produces sparse output $y_i\circledast h$. Under some technical assumptions, we show that all local minima of the objective function correspond to the inverse filter of $f$ up to an inherent sign and shift ambiguity, and all saddle points have strictly negative curvatures. This geometric structure allows successful recovery of $f$ and $x_i$ using a simple manifold gradient descent algorithm with random initialization. Our theoretical findings are complemented by numerical experiments, which demonstrate superior performance of the proposed approach over the previous methods.

Tue 4 Dec. 7:25 - 7:30 PST

Spotlight
Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds

Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin

In recent years, unfolding iterative algorithms as neural networks has become an empirical success in solving sparse recovery problems. However, its theoretical understanding is still immature, which prevents us from fully utilizing the power of neural networks. In this work, we study unfolded ISTA (Iterative Shrinkage Thresholding Algorithm) for sparse signal recovery. We introduce a weight structure that is necessary for asymptotic convergence to the true sparse signal. With this structure, unfolded ISTA can attain a linear convergence, which is better than the sublinear convergence of ISTA/FISTA in general cases. Furthermore, we propose to incorporate thresholding in the network to perform support selection, which is easy to implement and able to boost the convergence rate both theoretically and empirically. Extensive simulations, including sparse vector recovery and a compressive sensing experiment on real image data, corroborate our theoretical results and demonstrate their practical usefulness. We have made our codes publicly available: https://github.com/xchen-tamu/linear-lista-cpss.

Tue 4 Dec. 7:30 - 7:45 PST

Oral
Spectral Filtering for General Linear Dynamical Systems

Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang

We give a polynomial-time algorithm for learning latent-state linear dynamical systems without system identification, and without assumptions on the spectral radius of the system's transition matrix. The algorithm extends the recently introduced technique of spectral filtering, previously applied only to systems with a symmetric transition matrix, using a novel convex relaxation to allow for the efficient identification of phases.