Skip to yearly menu bar Skip to main content


Session

Tue Track 2 -- Session 1

Abstract:
Chat is not available.

Tue 4 Dec. 7:05 - 7:20 PST

Oral
On the Dimensionality of Word Embedding

Zi Yin · Yuanyuan Shen

In this paper, we provide a theoretical understanding of word embedding and its dimensionality. Motivated by the unitary-invariance of word embedding, we propose the Pairwise Inner Product (PIP) loss, a novel metric on the dissimilarity between word embeddings. Using techniques from matrix perturbation theory, we reveal a fundamental bias-variance trade-off in dimensionality selection for word embeddings. This bias-variance trade-off sheds light on many empirical observations which were previously unexplained, for example the existence of an optimal dimensionality. Moreover, new insights and discoveries, like when and how word embeddings are robust to over-fitting, are revealed. By optimizing over the bias-variance trade-off of the PIP loss, we can explicitly answer the open question of dimensionality selection for word embedding.

Tue 4 Dec. 7:20 - 7:25 PST

Spotlight
Unsupervised Cross-Modal Alignment of Speech and Text Embedding Spaces

Yu-An Chung · Wei-Hung Weng · Schrasing Tong · Jim Glass

Recent research has shown that word embedding spaces learned from text corpora of different languages can be aligned without any parallel data supervision. Inspired by the success in unsupervised cross-lingual word embeddings, in this paper we target learning a cross-modal alignment between the embedding spaces of speech and text learned from corpora of their respective modalities in an unsupervised fashion. The proposed framework learns the individual speech and text embedding spaces, and attempts to align the two spaces via adversarial training, followed by a refinement procedure. We show how our framework could be used to perform the tasks of spoken word classification and translation, and the experimental results on these two tasks demonstrate that the performance of our unsupervised alignment approach is comparable to its supervised counterpart. Our framework is especially useful for developing automatic speech recognition (ASR) and speech-to-text translation systems for low- or zero-resource languages, which have little parallel audio-text data for training modern supervised ASR and speech-to-text translation models, but account for the majority of the languages spoken across the world.

Tue 4 Dec. 7:25 - 7:30 PST

Spotlight
Diffusion Maps for Textual Network Embedding

Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin

Textual network embedding leverages rich text information associated with the network to learn low-dimensional vectorial representations of vertices. Rather than using typical natural language processing (NLP) approaches, recent research exploits the relationship of texts on the same edge to graphically embed text. However, these models neglect to measure the complete level of connectivity between any two texts in the graph. We present diffusion maps for textual network embedding (DMTE), integrating global structural information of the graph to capture the semantic relatedness between texts, with a diffusion-convolution operation applied on the text inputs. In addition, a new objective function is designed to efficiently preserve the high-order proximity using the graph diffusion. Experimental results show that the proposed approach outperforms state-of-the-art methods on the vertex-classification and link-prediction tasks.

Tue 4 Dec. 7:30 - 7:45 PST

Oral
A Retrieve-and-Edit Framework for Predicting Structured Outputs

Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang

For the task of generating complex outputs such as source code, editing existing outputs can be easier than generating complex outputs from scratch. With this motivation, we propose an approach that first retrieves a training example based on the input (e.g., natural language description) and then edits it to the desired output (e.g., code). Our contribution is a computationally efficient method for learning a retrieval model that embeds the input in a task-dependent way without relying on a hand-crafted metric or incurring the expense of jointly training the retriever with the editor. Our retrieve-and-edit framework can be applied on top of any base model. We show that on a new autocomplete task for GitHub Python code and the Hearthstone cards benchmark, retrieve-and-edit significantly boosts the performance of a vanilla sequence-to-sequence model on both tasks.