Skip to yearly menu bar Skip to main content


Search All 2018 Events
 

31 Results

<<   <   Page 1 of 3   >   >>
Poster
Tue 7:45 On gradient regularizers for MMD GANs
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton
Poster
Thu 7:45 Causal Inference via Kernel Deviance Measures
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh
Poster
Thu 7:45 Quadrature-based features for kernel approximation
Marina Munkhoeva · Yermek Kapushev · Evgeny Burnaev · Ivan Oseledets
Poster
Thu 7:45 Relating Leverage Scores and Density using Regularized Christoffel Functions
Edouard Pauwels · Francis Bach · Jean-Philippe Vert
Poster
Thu 7:45 Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb · Andreas Doerr · Sebastian Gerwinn · Barbara Rakitsch
Poster
Wed 7:45 Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities
Yunwen Lei · Ke Tang
Poster
Tue 14:00 Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot-Guillarmod · Clement Hongler · Franck Gabriel
Poster
Thu 7:45 Learning and Inference in Hilbert Space with Quantum Graphical Models
Siddarth Srinivasan · Carlton Downey · Byron Boots
Poster
Thu 14:00 Derivative Estimation in Random Design
Yu Liu · Kris De Brabanter
Poster
Wed 7:45 Balanced Policy Evaluation and Learning
Nathan Kallus
Poster
Thu 14:00 Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien · Alessandro Rudi · Francis Bach
Poster
Tue 14:00 Inferring Latent Velocities from Weather Radar Data using Gaussian Processes
Rico Angell · Daniel Sheldon