Poster
Group Equivariant Capsule Networks
Jan Eric Lenssen · Matthias Fey · Pascal Libuschewski
Room 517 AB #150
Keywords: [ Supervised Deep Networks ] [ Computer Vision ] [ Representation Learning ]
We present group equivariant capsule networks, a framework to introduce guaranteed equivariance and invariance properties to the capsule network idea. Our work can be divided into two contributions. First, we present a generic routing by agreement algorithm defined on elements of a group and prove that equivariance of output pose vectors, as well as invariance of output activations, hold under certain conditions. Second, we connect the resulting equivariant capsule networks with work from the field of group convolutional networks. Through this connection, we provide intuitions of how both methods relate and are able to combine the strengths of both approaches in one deep neural network architecture. The resulting framework allows sparse evaluation of the group convolution operator, provides control over specific equivariance and invariance properties, and can use routing by agreement instead of pooling operations. In addition, it is able to provide interpretable and equivariant representation vectors as output capsules, which disentangle evidence of object existence from its pose.
Live content is unavailable. Log in and register to view live content