Skip to yearly menu bar Skip to main content


Poster

Implicit Probabilistic Integrators for ODEs

Onur Teymur · Han Cheng Lie · Tim Sullivan · Ben Calderhead

Room 210 #52

Keywords: [ Gaussian Processes ] [ Probabilistic Methods ] [ Bayesian Theory ]


Abstract:

We introduce a family of implicit probabilistic integrators for initial value problems (IVPs), taking as a starting point the multistep Adams–Moulton method. The implicit construction allows for dynamic feedback from the forthcoming time-step, in contrast to previous probabilistic integrators, all of which are based on explicit methods. We begin with a concise survey of the rapidly-expanding field of probabilistic ODE solvers. We then introduce our method, which builds on and adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a rigorous proof of its well-definedness and convergence. We discuss the problem of the calibration of such integrators and suggest one approach. We give an illustrative example highlighting the effect of the use of probabilistic integrators—including our new method—in the setting of parameter inference within an inverse problem.

Live content is unavailable. Log in and register to view live content