Skip to yearly menu bar Skip to main content


Poster

(Probably) Concave Graph Matching

Haggai Maron · Yaron Lipman

Keywords: [ Convex Optimization ] [ Non-Convex Optimization ]

[ ]
2018 Poster

Abstract:

In this paper we address the graph matching problem. Following the recent works of \cite{zaslavskiy2009path,Vestner2017} we analyze and generalize the idea of concave relaxations. We introduce the concepts of \emph{conditionally concave} and \emph{probably conditionally concave} energies on polytopes and show that they encapsulate many instances of the graph matching problem, including matching Euclidean graphs and graphs on surfaces. We further prove that local minima of probably conditionally concave energies on general matching polytopes (\eg, doubly stochastic) are with high probability extreme points of the matching polytope (\eg, permutations).

Chat is not available.