Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

35 Results

<<   <   Page 2 of 3   >   >>
Poster
Mon 18:30 On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks
Arturs Backurs · Piotr Indyk · Ludwig Schmidt
Poster
Mon 18:30 Learning from uncertain curves: The 2-Wasserstein metric for Gaussian processes
Anton Mallasto · Aasa Feragen
Poster
Mon 18:30 Recursive Sampling for the Nystrom Method
Cameron Musco · Christopher Musco
Poster
Wed 18:30 Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search
Mohammad Ali Bashiri · Xinhua Zhang
Poster
Tue 18:30 Generalization Properties of Learning with Random Features
Alessandro Rudi · Lorenzo Rosasco
Poster
Mon 18:30 Kernel Feature Selection via Conditional Covariance Minimization
Jianbo Chen · Mitchell Stern · Martin J Wainwright · Michael Jordan
Poster
Mon 18:30 Efficient Approximation Algorithms for Strings Kernel Based Sequence Classification
Muhammad Farhan · Juvaria Tariq · Arif Zaman · Mudassir Shabbir · Imdad Ullah Khan
Poster
Tue 18:30 Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson
Poster
Mon 18:30 On clustering network-valued data
Soumendu Sundar Mukherjee · Purnamrita Sarkar · Lizhen Lin
Poster
Mon 18:30 Predictive State Recurrent Neural Networks
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li
Poster
Mon 18:30 SGD Learns the Conjugate Kernel Class of the Network
Amit Daniely
Poster
Mon 18:30 Scalable Levy Process Priors for Spectral Kernel Learning
Phillip Jang · Andrew Loeb · Matthew Davidow · Andrew Wilson