Poster
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas
Pacific Ballroom #13
Keywords: [ Deep Learning ] [ Computer Vision ] [ Representation Learning ] [ Visual Features ] [ Visual Perception ]
Few prior works study deep learning on point sets. PointNet is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
Live content is unavailable. Log in and register to view live content