Skip to yearly menu bar Skip to main content


Poster

Online Learning of Optimal Bidding Strategy in Repeated Multi-Commodity Auctions

M. Sevi Baltaoglu · Lang Tong · Qing Zhao

Keywords: [ Learning Theory ] [ Online Learning ] [ Combinatorial Optimization ]

[ ]
[ Paper
2017 Poster

Abstract: We study the online learning problem of a bidder who participates in repeated auctions. With the goal of maximizing his T-period payoff, the bidder determines the optimal allocation of his budget among his bids for $K$ goods at each period. As a bidding strategy, we propose a polynomial-time algorithm, inspired by the dynamic programming approach to the knapsack problem. The proposed algorithm, referred to as dynamic programming on discrete set (DPDS), achieves a regret order of $O(\sqrt{T\log{T}})$. By showing that the regret is lower bounded by $\Omega(\sqrt{T})$ for any strategy, we conclude that DPDS is order optimal up to a $\sqrt{\log{T}}$ term. We evaluate the performance of DPDS empirically in the context of virtual trading in wholesale electricity markets by using historical data from the New York market. Empirical results show that DPDS consistently outperforms benchmark heuristic methods that are derived from machine learning and online learning approaches.

Chat is not available.