Skip to yearly menu bar Skip to main content


Poster

Pixels to Graphs by Associative Embedding

Alejandro Newell · Jia Deng

Keywords: [ Computer Vision ]

[ ]
[ Paper
2017 Poster

Abstract:

Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph definition. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and demonstrate state-of-the-art performance on the challenging task of scene graph generation.

Chat is not available.