Poster
Geometric Descent Method for Convex Composite Minimization
Shixiang Chen · Shiqian Ma · Wei Liu
Pacific Ballroom #170
Keywords: [ Convex Optimization ] [ Sparsity and Compressed Sensing ]
[
Abstract
]
Abstract:
In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh to tackle nonsmooth and strongly convex composite problems. We prove that our proposed algorithm, dubbed geometric proximal gradient method (GeoPG), converges with a linear rate $(1-1/\sqrt{\kappa})$ and thus achieves the optimal rate among first-order methods, where $\kappa$ is the condition number of the problem. Numerical results on linear regression and logistic regression with elastic net regularization show that GeoPG compares favorably with Nesterov's accelerated proximal gradient method, especially when the problem is ill-conditioned.
Live content is unavailable. Log in and register to view live content