Skip to yearly menu bar Skip to main content


Session

Graphical Models

Abstract:
Chat is not available.

Tue 6 Dec. 1:40 - 2:00 PST

Tractable Operations for Arithmetic Circuits of Probabilistic Models

Yujia Shen · Arthur Choi · Adnan Darwiche

We consider tractable representations of probability distributions and the polytime operations they support. In particular, we consider a recently proposed arithmetic circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We show that PSDD supports a polytime multiplication operator, while they do not support a polytime operator for summing-out variables. A polytime multiplication operator make PSDDs suitable for a broader class of applications compared to arithmetic circuits, which do not in general support multiplication. As one example, we show that PSDD multiplication leads to a very simple but effective compilation algorithm for probabilistic graphical models: represent each model factor as a PSDD, and then multiply them.

Tue 6 Dec. 2:00 - 2:20 PST

Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

Eugene Belilovsky · Gaël Varoquaux · Matthew Blaschko

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator. Recent work invokes the sparsity assumptions to effectively remove the bias from a sparse estimator such as the lasso. These distributions can be used to give confidence intervals on edges in GGMs, and by extension their differences. However, in the case of comparing GGMs, these estimators do not make use of any assumed joint structure among the GGMs. Inspired by priors from brain functional connectivity we derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. This leads us to introduce the debiased multi-task fused lasso, whose distribution can be characterized in an efficient manner. We then show how the debiased lasso and multi-task fused lasso can be used to obtain confidence intervals on edge differences in GGMs. We validate the techniques proposed on a set of synthetic examples as well as neuro-imaging dataset created for the study of autism.

Tue 6 Dec. 2:20 - 2:40 PST

SDP Relaxation with Randomized Rounding for Energy Disaggregation

Kiarash Shaloudegi · András György · Csaba Szepesvari · Wilsun Xu

We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance based on the total energy-consumption signal of a household. The current state of the art models the problem as inference in factorial HMMs, and finds an approximate solution to the resulting quadratic integer program via quadratic programming. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations with randomized rounding, as well as with a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results demonstrate the superiority of our methods both in synthetic and real-world datasets.

Tue 6 Dec. 2:40 - 3:00 PST

Bayesian Intermittent Demand Forecasting for Large Inventories

Matthias W Seeger · David Salinas · Valentin Flunkert

We present a scalable and robust Bayesian method for demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.

Tue 6 Dec. 3:00 - 3:20 PST

Synthesis of MCMC and Belief Propagation

Sungsoo Ahn · Michael Chertkov · Jinwoo Shin

Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we, first, propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops. Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series. The main novelty underlying our design is in utilizing the concept of cycle basis, which provides an efficient decomposition of the generalized loops. In essence, the proposed MCMC schemes run on transformed GM built upon the non-trivial BP solution, and our experiments show that this synthesis of BP and MCMC outperforms both direct MCMC and bare BP schemes.