Skip to yearly menu bar Skip to main content


Session

Deep Learning

Abstract:
Chat is not available.

Tue 6 Dec. 7:20 - 7:40 PST

Deep Learning for Predicting Human Strategic Behavior

Jason Hartford · James R Wright · Kevin Leyton-Brown

Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant's cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that automatically performs cognitive modeling without relying on such expert knowledge. We introduce a novel architecture that allows a single network to generalize across different input and output dimensions by using matrix units rather than scalar units, and show that its performance significantly outperforms that of the previous state of the art, which relies on expert-constructed features.

Tue 6 Dec. 7:40 - 8:00 PST

Using Fast Weights to Attend to the Recent Past

Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu

Until recently, research on artificial neural networks was largely restricted to systems with only two types of variable: Neural activities that represent the current or recent input and weights that learn to capture regularities among inputs, outputs and payoffs. There is no good reason for this restriction. Synapses have dynamics at many different time-scales and this suggests that artificial neural networks might benefit from variables that change slower than activities but much faster than the standard weights. These ``fast weights'' can be used to store temporary memories of the recent past and they provide a neurally plausible way of implementing the type of attention to the past that has recently proven helpful in sequence-to-sequence models. By using fast weights we can avoid the need to store copies of neural activity patterns.

Tue 6 Dec. 8:00 - 8:20 PST

Sequential Neural Models with Stochastic Layers

Marco Fraccaro · Søren Kaae Sønderby · Ulrich Paquet · Ole Winther

How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model’s posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling.

Tue 6 Dec. 8:20 - 8:40 PST

Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences

Daniel Neil · Michael Pfeiffer · Shih-Chii Liu

Recurrent Neural Networks (RNNs) have become the state-of-the-art choice for extracting patterns from temporal sequences. Current RNN models are ill suited to process irregularly sampled data triggered by events generated in continuous time by sensors or other neurons. Such data can occur, for example, when the input comes from novel event-driven artificial sensors which generate sparse, asynchronous streams of events or from multiple conventional sensors with different update intervals. In this work, we introduce the Phased LSTM model, which extends the LSTM unit by adding a new time gate. This gate is controlled by a parametrized oscillation with a frequency range which require updates of the memory cell only during a small percentage of the cycle. Even with the sparse updates imposed by the oscillation, the Phased LSTM network achieves faster convergence than regular LSTMs on tasks which require learning of long sequences. The model naturally integrates inputs from sensors of arbitrary sampling rates, thereby opening new areas of investigation for processing asynchronous sensory events that carry timing information. It also greatly improves the performance of LSTMs in standard RNN applications, and does so with an order-of-magnitude fewer computes.