Skip to yearly menu bar Skip to main content


Poster

Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods

Lev Bogolubsky · Pavel Dvurechenskii · Alexander Gasnikov · Gleb Gusev · Yurii Nesterov · Andrei M Raigorodskii · Aleksey Tikhonov · Maksim Zhukovskii

Area 5+6+7+8 #16

Keywords: [ (Other) Probabilistic Models and Methods ] [ (Other) Optimization ] [ Stochastic Methods ] [ Graph-based Learning ] [ Ranking and Preference Learning ] [ (Application) Information Retrieval ]


Abstract:

In this paper, we consider a non-convex loss-minimization problem of learning Supervised PageRank models, which can account for features of nodes and edges. We propose gradient-based and random gradient-free methods to solve this problem. Our algorithms are based on the concept of an inexact oracle and unlike the state-of-the-art gradient-based method we manage to provide theoretically the convergence rate guarantees for both of them. Finally, we compare the performance of the proposed optimization methods with the state of the art applied to a ranking task.

Live content is unavailable. Log in and register to view live content