Skip to yearly menu bar Skip to main content


Communication-Optimal Distributed Clustering

Jiecao Chen · He Sun · David Woodruff · Qin Zhang

Area 5+6+7+8 #2

Keywords: [ (Other) Unsupervised Learning Methods ] [ Information Theory ] [ Spectral Methods ] [ Clustering ]


Clustering large datasets is a fundamental problem with a number of applications in machine learning. Data is often collected on different sites and clustering needs to be performed in a distributed manner with low communication. We would like the quality of the clustering in the distributed setting to match that in the centralized setting for which all the data resides on a single site. In this work, we study both graph and geometric clustering problems in two distributed models: (1) a point-to-point model, and (2) a model with a broadcast channel. We give protocols in both models which we show are nearly optimal by proving almost matching communication lower bounds. Our work highlights the surprising power of a broadcast channel for clustering problems; roughly speaking, to cluster n points or n vertices in a graph distributed across s servers, for a worst-case partitioning the communication complexity in a point-to-point model is n*s, while in the broadcast model it is n + s. We implement our algorithms and demonstrate this phenomenon on real life datasets, showing that our algorithms are also very efficient in practice.

Live content is unavailable. Log in and register to view live content