Skip to yearly menu bar Skip to main content


Learning Sensor Multiplexing Design through Back-propagation

Ayan Chakrabarti

Area 5+6+7+8 #141

Keywords: [ (Application) Computer Vision ] [ Deep Learning or Neural Networks ]


Recent progress on many imaging and vision tasks has been driven by the use of deep feed-forward neural networks, which are trained by propagating gradients of a loss defined on the final output, back through the network up to the first layer that operates directly on the image. We propose back-propagating one step further---to learn camera sensor designs jointly with networks that carry out inference on the images they capture. In this paper, we specifically consider the design and inference problems in a typical color camera---where the sensor is able to measure only one color channel at each pixel location, and computational inference is required to reconstruct a full color image. We learn the camera sensor's color multiplexing pattern by encoding it as layer whose learnable weights determine which color channel, from among a fixed set, will be measured at each location. These weights are jointly trained with those of a reconstruction network that operates on the corresponding sensor measurements to produce a full color image. Our network achieves significant improvements in accuracy over the traditional Bayer pattern used in most color cameras. It automatically learns to employ a sparse color measurement approach similar to that of a recent design, and moreover, improves upon that design by learning an optimal layout for these measurements.

Live content is unavailable. Log in and register to view live content