Poster
Estimating the Size of a Large Network and its Communities from a Random Sample
Lin Chen · Amin Karbasi · Forrest W. Crawford
Area 5+6+7+8 #136
Keywords: [ (Other) Statistics ] [ (Application) Social Networks ] [ (Other) Applications ] [ (Other) Bayesian Inference ]
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V;E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.
Live content is unavailable. Log in and register to view live content