Skip to yearly menu bar Skip to main content


Mixed Linear Regression with Multiple Components

Kai Zhong · Prateek Jain · Inderjit Dhillon

Area 5+6+7+8 #101

Keywords: [ Sparsity and Feature Selection ] [ (Other) Regression ] [ (Other) Unsupervised Learning Methods ] [ Clustering ]

Abstract: In this paper, we study the mixed linear regression (MLR) problem, where the goal is to recover multiple underlying linear models from their unlabeled linear measurements. We propose a non-convex objective function which we show is {\em locally strongly convex} in the neighborhood of the ground truth. We use a tensor method for initialization so that the initial models are in the local strong convexity region. We then employ general convex optimization algorithms to minimize the objective function. To the best of our knowledge, our approach provides first exact recovery guarantees for the MLR problem with $K \geq 2$ components. Moreover, our method has near-optimal computational complexity $\tilde O (Nd)$ as well as near-optimal sample complexity $\tilde O (d)$ for {\em constant} $K$. Furthermore, we show that our non-convex formulation can be extended to solving the {\em subspace clustering} problem as well. In particular, when initialized within a small constant distance to the true subspaces, our method converges to the global optima (and recovers true subspaces) in time {\em linear} in the number of points. Furthermore, our empirical results indicate that even with random initialization, our approach converges to the global optima in linear time, providing speed-up of up to two orders of magnitude.

Live content is unavailable. Log in and register to view live content