Skip to yearly menu bar Skip to main content


Satisfying Real-world Goals with Dataset Constraints

Gabriel Goh · Andrew Cotter · Maya Gupta · Michael P Friedlander

Area 5+6+7+8 #38

Keywords: [ (Other) Machine Learning Topics ] [ (Other) Optimization ] [ Convex Optimization ] [ (Other) Classification ]


The goal of minimizing misclassification error on a training set is often just one of several real-world goals that might be defined on different datasets. For example, one may require a classifier to also make positive predictions at some specified rate for some subpopulation (fairness), or to achieve a specified empirical recall. Other real-world goals include reducing churn with respect to a previously deployed model, or stabilizing online training. In this paper we propose handling multiple goals on multiple datasets by training with dataset constraints, using the ramp penalty to accurately quantify costs, and present an efficient algorithm to approximately optimize the resulting non-convex constrained optimization problem. Experiments on both benchmark and real-world industry datasets demonstrate the effectiveness of our approach.

Live content is unavailable. Log in and register to view live content