Skip to yearly menu bar Skip to main content


Poster

Gaussian Processes for Survival Analysis

Tamara Fernandez · Nicolas Rivera · Yee Whye Teh

Area 5+6+7+8 #18

Keywords: [ (Other) Statistics ] [ Bayesian Nonparametrics ] [ Gaussian Processes ]


Abstract:

We introduce a semi-parametric Bayesian model for survival analysis. The model is centred on a parametric baseline hazard, and uses a Gaussian process to model variations away from it nonparametrically, as well as dependence on covariates. As opposed to many other methods in survival analysis, our framework does not impose unnecessary constraints in the hazard rate or in the survival function. Furthermore, our model handles left, right and interval censoring mechanisms common in survival analysis. We propose a MCMC algorithm to perform inference and an approximation scheme based on random Fourier features to make computations faster. We report experimental results on synthetic and real data, showing that our model performs better than competing models such as Cox proportional hazards, ANOVA-DDP and random survival forests.

Live content is unavailable. Log in and register to view live content