Skip to yearly menu bar Skip to main content


Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach

Remi Lam · Karen Willcox · David Wolpert

Area 5+6+7+8 #8

Keywords: [ Gaussian Processes ] [ (Other) Optimization ]


We consider the problem of optimizing an expensive objective function when a finite budget of total evaluations is prescribed. In that context, the optimal solution strategy for Bayesian optimization can be formulated as a dynamic programming instance. This results in a complex problem with uncountable, dimension-increasing state space and an uncountable control space. We show how to approximate the solution of this dynamic programming problem using rollout, and propose rollout heuristics specifically designed for the Bayesian optimization setting. We present numerical experiments showing that the resulting algorithm for optimization with a finite budget outperforms several popular Bayesian optimization algorithms.

Live content is unavailable. Log in and register to view live content